HIV Databases HIV Databases home HIV Databases home
HIV sequence database

PDF >>

Broad HIV-1 Specific CTL Responses Reveal Extensive HLA Class I Binding Promiscuity of HIV-Derived, Optimally Defined CTL Epitopes

Nicole Frahm1 - Philip J.R. Goulder1 , 2 - Christian Brander1

Cytotoxic T lymphocyte (CTL) in HIV infection

Together with neutralizing antibodies and virus specific T-helper cells, HIV specific cytotoxic T lymphocytes (CTL) remain at the center of many vaccine development efforts despite the ongoing debate regarding their in vivo induction and function and their potential ability to provide effective protection from infection in vaccines. However, numerous reports support the important role that virus specific CTL responses may have in HIV infection and that their detailed characterization needs to continue. As in past years, we again have compiled an updated list of all optimal HIV derived CTL epitopes that have been described over the last 12 months. The total number of optimal CTL epitopes has now exceeded 200 and increasingly also includes epitopes identified in non-clade B infection and in individuals of non-Caucasian descent. Thus, the collective information on the specificity of these HIV directed responses is of growing relevance for vaccine development in populations most affected by the HIV epidemic and should facilitate further immune analyses in these mostly non-Caucasians ethnicities.

Broad CTL responses are not associated with HIV control

A number of laboratories, including ours, have in the past described the results from comprehensive CTL screening studies, in which overlapping peptide sets spanning the entire HIV genome are used in IFN-γ ELISpot assays (Novitsky2002,Draenert2004d,Frahm2004,Addo2003,Kiepiela2004,Cao2003a,Feeney2003,Sabbaj2003). While several reports show either a positive or a negative correlation between viral loads and the breadth or magnitude of these CTL responses, none of these recent studies have found any strong significant associations. Importantly, studies describing correlations have often been based on the analysis of CTL responses against a restricted number of proteins or even single epitopes using tetramer stainings and were often restricted to a relatively low number of subjects enrolled (Ogg1998,Edwards2002,Buseyne2002a,Buseyne2002b,Betts2001). The larger, more comprehensive studies including individuals at different stages of disease fail to see associations between CTL activity and viral loads (Frahm2004,Addo2003,Draenert2004d,Cao2003a,Feeney2003). Thus, it appears that either total CTL responses are not a correlate of immune protection, or the assays most widely applied do not reflect the number of CTL responses that actually do mediate effective in vivo control of viral replication. The latter may indeed play an important role as some of the most widely used approaches clearly have their limitations. Overcoming them may help to obtain a more accurate picture of the HIV specific CTL activity. For instance, recent studies from our laboratory show that the use of autologous test sequences yields more and stronger CTL responses to variable proteins compared to the use of consensus sequence based peptide sets (Altfeld2003). Thus, most studies may underestimate the true breadth of responses and may hide a potential association between CTL activity, viral loads and disease progression. This limitation could be overcome by testing an extensive number of individuals using autologous test sequences; an undertaking that, however, will be limited by the exuberant costs for autologous sequence peptide synthesis.

A further concern regards the use of overlapping peptide panels that span the entire expressed HIV genome. In most cases, these utilize peptides that are 15-18 amino acids in length and which overlap by either 10 or 11 amino acids. Recent studies by Draenert (Draenert2004b) indicate that the precise location of the optimal epitope within the overlapping peptide (OLP) significantly affects recognition of the OLP: if the epitope is located precisely at the C-terminal end of the OLP, it will be significantly better recognized than if located in the middle of the OLP. Recent studies in the SIV macaque model, where peptides can be synthesized that correspond exactly to the autologous virus sequence, indicate that even 15-mers overlapping by 11 amino acids fail to pick up a substantial proportion of the responses (Watkins et al., unpublished). The ultimate and ideal situation would be to use a panel of 11-mers overlapping by 10 amino acids, based on autologous virus sequence. The cost of such an enterprise is prohibitive, but for a limited number of subjects this exercise should perhaps be undertaken, as one becomes increasingly aware of the fact that the immunodominant CTL responses may not necessarily be the ones that are critical for immune control.

In addition, only a few different assays are currently being employed for the detection of virus specific CTL. To our knowledge, all optimal CTL epitopes listed in the present database have been identified either by assessing cytotoxic activity in a Cr51 release assay or by the induction of IFN-γ in Elispot or intracellular cytokine staining (ICS) assays. While cytolytic function may be an important aspect of effective CTL, IFN-γ release may well be a surrogate for other functions but not occur in all HIV-specific cells. A number of laboratories have tackled these problems and established other assays, such as CD107 degranulation and perforin/granzyme release assays as alternative ways to assess CTL responses. Also, replication inhibition assays of the type first described by Yang et al. (Yang1997), in which CTL clones are co-cultured with HLA-matched CD4+ T cells infected with autologous virus clones, may provide a means to come closer to the situation in vivo. Such assays will help to address qualitative differences in the viral replication inhibition efficacy of CTL of different specificity and will also help to identify processing mutations that are hard to detect in other, non-replication based assays. The frequency of processing escape mutations is unknown but a recent number of descriptions of mutational processing escape mutations in HIV suggests that this is a mechanism of escape that has been much under-recognized (Yokomaku2004,Draenert2004c,Allen2004). Overall, these assays still need further adaptation and simplification until comprehensive responses can be measured on a single peptide level in a larger population of HIV infected individuals.

Finally, assessing total CTL responses by comprehensive screening may detect too many immunologically irrelevant responses and thus obscure a possible association between CTL activity and viral control. Indeed, there is compelling evidence that some single epitope-specific responses can control viral replication as viral escape in such epitopes is associated with increased viral loads and acceleration of disease progression (Draenert2004c,Cao2003b,Barouch2002,Goulder1997c,Friedrich2004,Allen2000,Kelleher2001,Klenerman2002,Leslie2004). Thus, besides single responses that appear to have the capacity to provide strong immune surveillance, the current assays may also detect many less efficient responses and thus hide a possible association between CTL activity and viral load. On the other hand, individuals with high viral loads and fast disease progression can well maintain strong CTL responses without evidence of affecting viral replication (Draenert2004d). In this study, the lack of control over viral replication could not be explained by sequence variation in the targeted regions of the autologous virus, indicating functional deficiencies specific to these individuals or responses. New data from our lab and other investigators suggest that the ability of HIV-epitope specific CTL to proliferate in response to antigen is lost in the course of infection, and that this defect could be associated with the loss of effective control over viral replication (Migueles2002) (and Lichterfeld et al., unpublished). Together, these studies suggest that at least some HIV specific CTL can exert effective replication control and that the often generalized description of ``functional deficiency of HIV specific CTL'' is likely an over-simplification.

Extensive HLA class I binding promiscuity of HIV derived optimal epitopes

Regardless of possible associations between CTL activity and viral loads, knowing the precise targets of these CTL is still a prerequisite for many other questions to be asked, such as viral evolution, genetic imprinting and their potential use in epitope-based vaccines. Furthermore, the well-defined epitope landscape can be used to address questions of antigen processing and epitope presentation. In a recent study, we have used the optimally defined CTL epitopes to address the degree of HLA class I binding promiscuity. Briefly, 100 HIV infected individuals of mainly non-Caucasian background were tested for CTL responses against almost 200 described, optimal HIV derived CTL epitopes, regardless of the individual's HLA type. Interestingly, only about 40% of all responses were detected in individuals who expressed the appropriate HLA class I allele. Another 20% of the responses were attributed to the presence of an allele that fell into the same HLA-supertype as the originally described restricting allele (for instance, an HLA-A3+ individual showing a positive response against an HLA-A11 restricted epitope). This left 40% of all responses to be restricted by alleles that do not share obvious similarities to the originally described allele or were, thus far at least, not grouped into the same HLA-supertype as the original allele. Although more detailed analyses will be required to confirm the precise length and anchor residues for the epitopes presented on alternative alleles, the data strongly suggest the presence of epitopes with wide HLA-class I binding promiscuity. This is supported by some of the epitopes included in the present update, for which presentation and ex vivo recognition was documented for up to four different HLA class I alleles (TL9 on B7, B42, B81 and Cw08). Furthermore, strong support for extensive epitope binding promiscuity is derived from the observation that CTL responses to certain regions of the viral genome, such as Gag and Nef, show strong clustering of responses (Frahm2004,Frahm2002a). In data now publicly available at the Los Alamos database (, we show that 72 of 150 individuals tested reacted to the very same overlapping 18-mer peptide in Nef. Since these individuals expressed widely diverse HLA types and the number of potential epitopes in a single 18-mer is limited, the data strongly suggest that at least some epitopes must be presented by multiple HLA class I alleles.

Implications for vaccine development and viral evolution studies

Clearly, the identification of CTL epitopes that can bind multiple HLA class I alleles will facilitate the selection of epitopes with an increased population coverage. However, it will also be important to assess potential functional differences between responses to the same epitopes presented on different alleles. This may be of special interest in cases where the epitopes are shared between HLA class I alleles differentially associated with slow or fast HIV disease progression. An example of this is the TL9 response restricted by HLA-B42 and B81. HLA-B81 is associated with low viral loads in the Durban population, whereas B42 is not (Goulder et al., unpublished). Sequencing of the virus indicates that escape mutations are selected in the B81-positive subjects in the region of the virus encoding the TL9 epitope, whereas this does not occur in the B42-positive subjects (Leslie et al., unpublished). Other examples include the epitope QW9, shared by HLA-B57 (slow) and HLA-B53 (fast disease progression). Using these epitopes, one may be able to address the role that the HLA class I molecule or the presented CTL epitope, respectively, play in determining the rate of disease progression. Finally, cross-binding epitopes may also impact the analyses of CTL escape patterns as allele-associated footprints may need to take into consideration other alleles with the ability to share CTL epitopes. Similarly, the assessment of a ``functional HLA homozygosity'' in which alleles that frequently share CTL epitopes are considered ``functionally homozygous'' may reveal additional insight into the mechanism by which genetically homozygous individuals show a faster disease progression compared to HLA heterozygous subjects (Carrington1999).


As every year, we would like to express our gratitude to the large number of researchers in the field who continuously contribute to this database. The mostly unpublished data added to this years update stemming from the AIDS Research Center at Mass. General Hospital have been largely funded by an NIH contract (#NO1-A1-15442) supporting HLA typing and HIV CTL epitope definition in non-Caucasian populations and non clade B HIV infection.

We very much welcome any criticism, comments and additions to this list since we are sure that some epitopes will unintentionally escape our attention, despite close monitoring of the literature. Please write or call us with any comments you may have at:

  Nicole Frahm   Christian Brander  
  phone: (617) 726-2648   phone: (617) 724-5789  
  FAX: (617) 726-4691   FAX: (617) 726-5411  
  Philip J. R. Goulder   Bette Korber  
  phone: +44 (1865) 281884   phone: (505) 665-4453  
  FAX: +44 (1865) 281236   FAX: (505) 665-3493  

Table of optimal HIV-1 CTL epitopes

Table 1: Best defined HIV CTL epitopes.
HLA Protein AA Sequence Reference
A*0101 (A1) gp160 787-795 RRGWEVLKY Cao2002
A*02 (A2) RT 127-135 YTAFTIPSV Draenert2004a
A*0201 (A2)    
2   6  C
         1° anchor
L      L
M      V
    2° anchor
A*0201 (A2) p17 77-85 SLYNTVATL Parker1994,Johnson1991,Parker1992
A*0201 (A2) p1 1-10 FLGKIWPSYK Yu2002b
A*0201 (A2) RT 33-41 ALVEICTEM Haas1998,Haas1999
A*0201 (A2) RT 179-187 VIYQYMDDL Harrer1996a
A*0201 (A2) RT 309-317 ILKEPVHGV Tsomides1991,Walker1989
A*0201 (A2) Vpr 59-67 AIIRILQQL Altfeld2001a,Altfeld2001b
A*0201 (A2) gp160 311-320 RGPGRAFVTI Alexander-Miller1996
A*0201 (A2) gp160 813-822 SLLNATDIAV Dupuis1995
A*0201 (A2) Nef 136-145 PLTFGWCYKL Maier1999,Haas1996
A*0201 (A2) Nef 180-189 VLEWRFDSRL Maier1999,Haas1996
A*0202 (A2)    
2      C
L      L
A*0202 (A2) p17 77-85 SLYNTVATL Goulder1999
A*0205 (A2) p17 77-85 SLYNTVATL Goulder1999
A*0205 (A2) gp41 335-343 RIRQGLERA Sabbaj2003
A*0207 (A2) p24 164-172 YVDRFYKTL Currier2002
A*0301 (A3) p17 18-26 KIRLRPGGK Harrer1996b
A*0301 (A3) p17 20-28 RLRPGGKKK Culmann1999,Lewinsohn1999b,Goulder1997b,Wilkes1999b
A*0301 (A3) p17 20-29 RLRPGGKKKY Goulder2000b
A*0301 (A3) RT 33-43 ALVEICTEMEK Haas1998,Haas1999
A*0301 (A3) RT 73-82 KLVDFRELNK Yu2002a
A*0301 (A3) RT 93-101 GIPHPAGLK Yu2002a
A*0301 (A3) RT 158-166 AIFQSSMTK Threlkeld1997
A*0301 (A3) RT 269-277 QIYPGIKVR Yu2002a
A*0301 (A3) RT 356-366 RMRGAHTNDVK Yu2002a
A*0301 (A3) Integrase 179-188 AVFIHNFKRK Yu2002a
A*0301 (A3) Vif 17-26 RIRTWKSLVK Altfeld2001a,Yu2002a
A*0301 (A3) Vif 28-36 HMYISKKAK Yu2002a
A*0301 (A3) Vif 158-168 KTKPPLPSVKK Yu2002a
A*0301 (A3) Rev 57-66 ERILSTYLGR Yu2002a,Addo2002a
A*0301 (A3) gp160 37-46 TVYYGVPVWK Johnson1994a
A*0301 (A3) gp160 770-780 RLRDLLLIVTR Takahashi1991
A*0301 (A3) Nef 73-82 QVPLRPMTYK Culmann1991,Koenig1990
A*0301 (A3) Nef 84-92 AVDLSHFLK Yu2002a
A*1101 (A11)    
2      C
A*1101 (A11) p17 84-92 TLYCVHQRI Harrer1998
A*1101 (A11) p24 217-227 ACQGVGGPGHK Sipsas1997
A*1101 (A11) RT 158-166 AIFQSSMTK Zhang1993,Threlkeld1997,Johnson1994b
A*1101 (A11) RT 341-350 IYQEPFKNLK Culmann1999
A*1101 (A11) RNase 80-88 QIIEQLIKK Fukada1999
A*1101 (A11) Integrase 179-188 AVFIHNFKRK Fukada1999
A*1101 (A11) gp160 199-207 SVITQACPK Fukada1999
A*1101 (A11) Nef 73-82 QVPLRPMTYK Buseyne1999
A*1101 (A11) Nef 75-82 PLRPMTYK Culmann1991
A*1101 (A11) Nef 84-92 AVDLSHFLK Culmann1991
A*23 (A23) gp41 74-82 RYLKDQQLL Cao2003a
A*2402 (A24)    
2      C
Y      I
A*2402 (A24) p17 28-36 KYKLKHIVW Ikeda-Moore1998,Lewinsohn1999a
A*2402 (A24) p24 162-172 RDYVDRFFKTL Dorrell1999,Rowland-Jones1999
A*2402 (A24) gp160 52-61 LFCASDAKAY Shankar1996,Lieberman1992
A*2402 (A24) gp160 585-593 RYLKDQQLL Dai1992
A*2402 (A24) Nef 134-141 RYPLTFGW Ikeda-Moore1998,Goulder1997a
A*2501 (A25) p24 13-23 QAISPRTLNAW Kurane1999
A*2501 (A25) p24 71-80 ETINEEAAEW vanBaalen1996,Klenerman1996
A*2601 (A26)    
12   6  C
V       Y
T       F
 D    I  
 E    L  
A*2601 (A26) p24 35-43 EVIPMFSAL Goulder1996a
A*2601 (A26) Pol 604-612 ETKLGKAGY Sabbaj2003
A*29 (A29) Nef 120-128 YFPDWQNYT Draenert2004b
A*2902 (A29) gp160 209-217 SFEPIPIHY Altfeld2000a
A*3002 (A30)    
12        C
 Y        Y
A*3002 (A30) p17 76-86 RSLYNTVATLY Goulder2001
A*3002 (A30) RT 173-181 KQNPDIVIY Goulder2001
A*3002 (A30) RT 263-271 KLNWASQIY Goulder2001
A*3002 (A30) RT 356-365 RMRGAHTNDV Sabbaj2003
A*3002 (A30) Integrase 219-227 KIQNFRVYY Rodriguez2004,Sabbaj2003
A*3002 (A30) gp160 704-712 IVNRNRQGY Goulder2001
A*3002 (A30) gp120 310-318 HIGPGRAFY Sabbaj2003
A*3002 (A30) gp41 283-291 KYCWNLLQY Goulder2001
A*3101 (A31)    
2        C
A*3101 (A31) gp160 770-780 RLRDLLLIVTR Safrit1994a,Safrit1994b
A*3201 (A32) RT 392-401 PIQKETWETW Harrer1996b
A*3201 (A32) gp160 419-427 RIKQIINMW Harrer1996b
A*3303 (A33) gp41 187-196 VFAVLSIVNR Hossain2001
A*3303 (A33) gp41 320-327 EVAQRAYR Hossain2001
A*3303 (A33) Vpu 29-37 EYRKILRQR Addo2002b
A*3303 (A33) Nef 133-141 TRYPLTFGW Cao2002
A*6801 (A68) Tat 39-49 ITKGLGISYGR Oxenius2002
A*6801 (A68) Vpr 52-62 DTWAGVEAIIR Sabbaj2004
A*6802 (A68) Protease 3-11 ITLWQRPLV Rowland-Jones1999
A*6802 (A68) Protease 30-38 DTVLEEWNL Rowland-Jones1999
A*6802 (A68) gp160 777-785 IVTRIVELL Wilkes1999a
A*7401 (A19) Protease 3-11 ITLWQRPLV Rowland-Jones1999
B*07 (B7) p24 84-92 HPVHAGPIA Yu2002a
B*0702 (B7)    
123     C
P      L
A R     F
R K      
B*0702 (B7) p24 16-24 SPRTLNAWV Lewinsohn1999a
B*0702 (B7) p24 48-56 TPQDLNTML Wilson1999a,Wilson1997,Jin2000,Wilkes1999c
B*0702 (B7) p24 223-231 GPGHKARVL Goulder1999
B*0702 (B7) Vpr 34-42 FPRIWLHGL Altfeld2001a
B*0702 (B7) Vif 48-57 HPRVSSEVHI Altfeld2001a
B*0702 (B7) gp160 298-307 RPNNNTRKSI Safrit1994b
B*0702 (B7) gp160 843-851 IPRRIRQGL Wilkes1999b
B*0702 (B7) Nef 68-77 FPVTPQVPLR Maier1999,Haas1996
B*0702 (B7) Nef 68-76 FPVTPQVPL Bauer1997,Frahm2002b
B*0702 (B7) Nef 71-79 TPQVPLRPM Goulder1999
B*0702 (B7) Nef 77-85 RPMTYKAAL Bauer1997
B*0702 (B7) Nef 106-115 RQDILDLWIY Goulder1999
B*0702 (B7) Nef 128-137 TPGPGVRYPL Haas1996,Culmann-Penciolelli1994
B*0801 (B8)    
23 5   C
K K   L
B*0801 (B8) p17 24-32 GGKKKYKLK Goulder1997d,Rowland-Jones1993
B*0801 (B8) p17 74-82 ELRSLYNTV Goulder1997d
B*0801 (B8) p24 128-135 EIYKRWII Sutton1993,Goulder1997d
B*0801 (B8) p24 197-205 DCKTILKAL Sutton1993
B*0801 (B8) RT 18-26 GPKVKQWPL Sutton1993,Walker1989
B*0801 (B8) gp160 2-10 RVKEKYQHL Sipsas1997
B*0801 (B8) gp160 586-593 YLKDQQLL Shankar1996,Johnson1992
B*0801 (B8) Nef 13-20 WPTVRERM Goulder1997d
B*0801 (B8) Nef 90-97 FLKEKGGL Price1997,Culmann-Penciolelli1994
B*14 (B14) p15 42-50 CRAPRKKGC Yu2002b
B*1402 (B14)    
23 5   C
R  R   L
K  H    
B*1402 (B14) p24 166-174 DRFYKTLRA Harrer1996b
B*1402 (B14) gp160 584-592 ERYLKDQQL Johnson1992
B*1501 (B62)    
2      C
Q      Y
L      F
B*1501 (B62) p24 137-145 GLNKIVRMY Johnson1991,Goulder1999
B*1501 (B62) RT 260-271 LVGKLNWASQIY Johnson1999
B*1501 (B62) RT 309-318 ILKEPVHGVY Johnson1991,Johnson1999
B*1501 (B62) Nef 19-27 RMRRAEPAA Cao2002
B*1501 (B62) Nef 117-127 TQGYFPDWQNY Culmann1999
B*1503 (B72) Integrase 185-194 FKRKGGIGGY Honeyborne2003
B*1503 (B72) Integrase 263-271 RKAKIIRDY Cao2003a
B*1503 (B72) Tat 38-47 FQTKGLGISY Novitsky2001
B*1503 (B72) Pol 651-660 VTDSQYALGI Sabbaj2003
B*1503 (B72) Nef 183-191 WRFDSRLAF Cao2002
B*1510 (B71) Gag p24 61-69 GHQAAMQML Day2003
B*1510 (B71) Vif 79-87 WHLGHVSI Honeyborne2003
B*1516 (B63)    
2      9
T      Y
S      I
B*1516 (B63) gp160 375-383 SFNCGGEFF Wilson1999a,Wilson1997
B*1801 (B18) p24 161-170 FRDYVDRFYK Ogg1998
B*1801 (B18) Vif 102-111 LADQLIHLHY Altfeld2001a
B*1801 (B18) Nef 135-143 YPLTFGWCY Culmann1991,Culmann-Penciolelli1994
B*27 (B27) Vpr 31-39 VRHFPRIWL Addo2004
B*2703 (B27) p24 131-140 RRWIQLGLQK Rowland-Jones1999,Rowland-Jones1998
B*2705 (B27)    
12       C
R       L
K        K
R        R
G        I
B*2705 (B27) p17 19-27 IRLRPGGKK McKinney1999,Lewinsohn1999a
B*2705 (B27) p24 131-140 KRWIILGLNK Buseyne1993,Nixon1988,Goulder1997c
B*2705 (B27) gp160 786-795 GRRGWEALKY Lieberman1999,Lieberman1992
B*2705 (B27) Nef 105-114 RRQDILDLWI Goulder1997b
B*3501 (B35)    
2      C
P      Y
A      F
V      M
S      L
B*3501 (B35) p17 36-44 WASRELERF Goulder1997a
B*3501 (B35) p17 124-132 NSSKVSQNY Rowland-Jones1995
B*3501 (B35) p24 122-130 PPIPVGDIY Rowland-Jones1995
B*3501 (B35) p24 122-130 NPVPVGNIY Rowland-Jones1995
B*3501 (B35) RT 107-115 TVLDVGDAY Wilson1999b,Wilkes1999b
B*3501 (B35) RT 118-127 VPLDEDFRKY Shiga1996,Sipsas1997
B*3501 (B35) RT 175-183 NPDIVIYQY Shiga1996,Sipsas1997
B*3501 (B35) RT 175-183 HPDIVIYQY Rowland-Jones1995
B*3501 (B35) gp160 42-52 VPVWKEATTTL Wilkes1999b
B*3501 (B35) gp160 78-86 DPNPQEVVL Shiga1996
B*3501 (B35) gp160 606-614 TAVPWNASW Johnson1994a
B*3501 (B35) Nef 74-81 VPLRPMTY Culmann1991,Culmann-Penciolelli1994
B*3701 (B37)    
2      C
D      F
E      M
B*3701 (B37) Nef 120-128 YFPDWQNYT Culmann1999,Culmann1991
B*3801 (B38) Vif 79-87 WHLGQGVSI Sabbaj2004
B*3801 (B38) gp160 104-112 MHEDIISLW Cao2002
B*3901 (B39)    
2      C
R      L
B*3901 (B39) p24 61-69 GHQAAMQML Kurane1999
B*4001 (B60)    
2      C
E      L
B*4001 (B60) p17 92-101 IEIKDTKEAL Altfeld2000b
B*4001 (B60) p24 44-52 SEGATPQDL Altfeld2000b
B*4001 (B60) p6 33-41 KELYPLTSL Yu2002b
B*4001 (B60) RT 5-12 IETVPVKL Draenert2004a
B*4001 (B60) RT 202-210 IEELRQHLL Altfeld2000b
B*4001 (B60) gp160 805-814 QELKNSAVSL Altfeld2000b
B*4001 (B60) Nef 37-45 LEKHGAITS Draenert2004a
B*4001 (B60) Nef 92-100 KEKGGLEGL Altfeld2000b
B*4002 (B61) p17 11-19 GELDRWEKI Sabbaj2003
B*4002 (B61) p24 70-78 KETINEEAA Sabbaj2003
B*4002 (B61) p24 78-86 AEWDRVHPV Sabbaj2003
B*4002 (B61) p15 64-71 TERQANFL Sabbaj2003
B*4002 (B61) Nef 92-100 KEKGGLEGL Altfeld2000b,Sabbaj2003
B*42 (B42) Integrase 260-268 VPRRKAKII Kiepiela2002
B*4201 (B42) p24 48-56 TPQDLNTML Goulder2000a
B*4201 (B42) RT 271-279 YPGIKVRQL Wilkes1999b
B*4201 (B42) Nef 128-137 TPGPGVRYPL Goulder1999
B*44 (B44) Protease 34-42 EEMNLPGRW Rodriguez2004
B*4402 (B44)    
2        C
E        F
B*4402 (B44) p24 162-172 RDYVDRFYKTL Ogg1998
B*4402 (B44) p24 174-184 AEQASQDVKNW Lewinsohn1999a
B*4402 (B44) gp160 31-40 AENLWVTVYY Borrow1997
B*4415 (B12) p24 28-36 EEKAFSPEV Bird2002
B*4501 (B45) Gag-p2 1-10 AEAMSQVTNS Sabbaj2004
B*50 (B50) Nef 37-45 LEKHGAITS Draenert2004a
B*51 (B51) Vif 57-66 IPLGDAKLII Bansal2004
B*51 (B51) Vpr 29-37 EAVRHFPRI Cao2003a
B*5101 (B51)    
2      C
A      F
P      I
B*5101 (B51) RT 42-50 EKEGKISKI Haas1998,Haas1999
B*5101 (B51) RT 128-135 TAFTIPSI Sipsas1997
B*5101 (B51) gp160 416-424 LPCRIKQII Tomiyama1999
B*5201 (B52)    
2     C
B*5201 (B52) p24 143-150 RMYSPTSI Wilson1997,Wilkes1999b
B*53 (B53) Nef 135-143 YPLTFGWCF Kiepiela2002
B*5301 (B53)    
2      C
P      L
B*5301 (B53) p24 48-56 TPYDINQML Gotch1993
B*5301 (B53) p24 176-184 QASQEVKNW Buseyne1999,Buseyne1996,Buseyne1997
B*5301 (B53) Tat 2-11 EPVDPRLEPW Addo2001
B*5301 (B53) Nef 135-143 YPLTFGWCY Sabbaj2003
B*5501 (B55)    
2       C
B*5501 (B55) gp160 42-51 VPVWKEATTT Shankar1996,Lieberman1999
B*57 (B57) Integrase 123-132 STTVKAACWW Rodriguez2004,Addo2004
B*57 (B57) Nef 116-124 HTQGYFPDW Draenert2002
B*5701 (B57)    
12      C
A      F
T      W
K       Y
B*5701 (B57) p24 15-23 ISPRTLNAW Johnson1991,Goulder1996b
B*5701 (B57) p24 30-40 KAFSPEVIPMF Goulder1996b
B*5701 (B57) p24 108-118 TSTLQEQIGWF Goulder1996b
B*5701 (B57) p24 176-184 QASQEVKNW Goulder1996b
B*5701 (B57) RT 244-252 IVLPEKDSW vanderBurg1997,Hay1999
B*5701 (B57) Integrase 173-181 KTAVQMAVF Goulder1996b,Hay1999
B*5701 (B57) Vpr 30-38 AVRHFPRIW Altfeld2001a
B*5701 (B57) Vif 31-39 ISKKAKGWF Altfeld2001a
B*5701 (B57) Rev 14-23 KAVRLIKFLY Addo2001
B*5701 (B57) Nef 116-125 HTQGYFPDWQ Culmann1991
B*5701 (B57) Nef 120-128 YFPDWQNYT Culmann1991
B57 (B57) Nef 116-124 HTQGYFPDW Draenert2002
B*5703 (B57) p24 30-37 KAFSPEVI Goulder2000b
B*5703 (B57) p24 30-40 KAFSPEVIPMF Goulder2000b
B*5801 (B58)    
12       C
A       F
T       W
B*5801 (B58) p24 108-117 TSTVEEQQIW Bertoletti1998
B*5801 (B58) p24 108-117 TSTLQEQIGW Goulder1996b
B*5801 (B58) RT 375-383 IAMESIVIW Kiepiela2002
B*5801 (B58) Rev 14-23 KAVRLIKFLY Addo2001
B*81 (B81) Pol 715-723 LFLDGIDKA Addo2002a
B*8101 (B81) p24 48-56 TPQDLNTML Goulder2000a
B*8101 (B81) Vpr 34-42 FPRIWLHGL Altfeld2001a
Cw*0102 (Cw1)    
23    C
A     L
Cw*0102 (Cw1) p24 36-43 VIPMFSAL Goulder1997a
Cw*03 (Cw03) Nef 83-91 AALDLSHFL Draenert2004a
Cw*0303 (Cw9) Gag p24 164-172 YVDRFFKTL Honeyborne2003
Cw*0304 (Cw10) Gag p24 164-172 YVDRFFKTL Honeyborne2003
Cw*0304 (Cw10) gp41 46-54 RAIEAQQHL Trocha2002,Currier2002
Cw*0401 (Cw4)    
2   6  C
Y      L
P      F
F      M
Cw*0401 (Cw4) gp160 375-383 SFNCGGEFF Johnson1993,Wilson1997
Cw*05 (Cw05) Gag p24 174-185 AEQASQEVKNWM Draenert2004a
Cw*07 (Cw7) Nef 105-115 KRQEILDLWVY Kiepiela2002
Cw*07 (Cw7) Nef 105-115 RRQDILDLWIY Yu2002a
Cw*0802 (Cw8) p24 48-56 TPQDLNTML Goulder2000a
Cw*0802 (Cw8) Nef 83-91 AAVDLSHFL Cao2003a
Cw*12 (Cw12) Tat 30-37 CCFHCQVC Nixon1999,Cao2003a
Cw*15 (Cw15) gp41 46-54 RAIEAQQHL Trocha2002


M. M. Addo, M. Altfeld, E. S. Rosenberg, R. L. Eldridge, M. N. Philips, K. Habeeb, A. Khatri, C. Brander, G. K. Robbins, G. P. Mazzara, P. J. Goulder, & B. D. Walker.
The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals.
Proc Natl Acad Sci U S A 98(4):1781-1786, 2001.

M. Addo.
Personal communication, 2002.

M. M. Addo, M. Altfeld, A. Rathod, M. Yu, X. G. Yu, P. J. R. Goulder, E. S. Rosenberg, & B. D. Walker.
HIV-1 Vpu represents a minor target for cytotoxic T lymphocytes in HIV-1-infection.
AIDS 16(7):1071-1073, 2002.

M. M. Addo, X. G. Yu, A. Rathod, D. Cohen, R. L. Eldridge, D. Strick, M. N. Johnston, C. Corcoran, A. G. Wurcel, C. A. Fitzpatrick, M. E. Feeney, W. R. Rodriguez, N. Basgoz, R. Draenert, D. R. Stone, C. Brander, P. J. R. Goulder, E. S. Rosenberg, M. Altfeld, & B. D. Walker.
Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load.
J Virol 77(3):2081-2092, 2003.

M. M. Addo & A. Rathod.
Personal communication, 2004.

M. A. Alexander-Miller, K. C. Parker, T. Tsukui, C. D. Pendleton, J. E. Coligan, & J. A. Berzofsky.
Molecular analysis of presentation by HLA-A2.1 of a promiscuously binding V3 loop peptide from the HIV-1 Envelope protein to human cytotoxic T lymphocytes.
Int Immunol 8(5):641-649, 1996.

T. M. Allen, D. H. O'Connor, P. Jing, J. L. Dzuris, B. R. Mothe, T. U. Vogel, E. Dunphy, M. E. Liebl, C. Emerson, N. Wilson, K. J. Kunstman, X. Wang, D. B. Allison, A. L. Hughes, R. C. Desrosiers, J. D. Altman, S. M. Wolinsky, A. Sette, & D. I. Watkins.
Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia.
Nature 407(6802):386-390, 2000.

T. M. Allen et al.
Selection, transmission and reversion of an antigen processing CTL escape mutation in HIV-1 infection.
J of Virol in press, 2004.

M. A. Altfeld.
Personal communication, 2000.

M. A. Altfeld, A. Trocha, R. L. Eldridge, E. S. Rosenberg, M. N. Phillips, M. M. Addo, R. P. Sekaly, S. A. Kalams, S. A. Burchett, K. McIntosh, B. D. Walker, & P. J. Goulder.
Identification of dominant optimal HLA-B60- and HLA-B61-restricted cytotoxic T-lymphocyte (CTL) epitopes: Rapid characterization of CTL responses by enzyme-linked immunospot assay.
J Virol 74(18):8541-8549, 2000.

M. Altfeld, M. M. Addo, R. L. Eldridge, X. G. Yu, S. Thomas, A. Khatri, D. Strick, M. N. Phillips, G. B. Cohen, S. A. Islam, S. A. Kalams, C. Brander, P. J. Goulder, E. S. Rosenberg, & B. D. Walker.
Vpr is preferentially targeted by CTL during HIV-1 infection.
J Immunol 167(5):2743-2752, 2001.

M. A. Altfeld, B. Livingston, N. Reshamwala, P. T. Nguyen, M. M. Addo, A. Shea, M. Newman, J. Fikes, J. Sidney, P. Wentworth, R. Chesnut, R. L. Eldridge, E. S. Rosenberg, G. K. Robbins, C. Brander, P. E. Sax, S. Boswell, T. Flynn, S. Buchbinder, P. J. Goulder, B. D. Walker, A. Sette, & S. A. Kalams.
Identification of novel HLA-A2-restricted human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte epitopes predicted by the HLA-A2 supertype peptide-binding motif.
J Virol 75(3):1301-1311, 2001.

M. Altfeld, M. M. Addo, R. Shankarappa, P. K. Lee, T. M. Allen, X. G. Yu, A. Rathod, J. Harlow, K. O'Sullivan, M. N. Johnston, P. J. R. Goulder, J. I. Mullins, E. S. Rosenberg, C. Brander, B. Korber, & B. D. Walker.
Enhanced detection of human immunodeficiency virus type 1-specific T-cell responses to highly variable regions by using peptides based on autologous virus sequences.
J Virol 77(13):7330-7340, 2003.

A. Bansal, P. Goepfert, et al.
Personal communication, 2004.

L. D. Barber, B. Gillece-Castro, L. Percival, X. Li, C. Clayberger, & P. Parham.
Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes.
Curr Biol 5:179-190, 1995.

L. D. Barber, L. Percival, K. L. Arnett, J. E. Gumperz, L. Chen, & P. Parham.
Polymorphism in the α1 helix of the HLA-B heavy chain can have an overriding influence on peptide-binding specificity.
J Immunol 158:1660-1669, 1997.

D. Barouch, T. Friede, S. Stevanovic, L. Tussey, K. Smith, S. Rowland-Jones, V. Braud, A. McMichael, & H. G. Rammensee.
HLA-A2 subtypes are functionally distinct in peptide binding and presentation.
J Exp Med 182:1847-1856, 1995.

D. H. Barouch, J. Kunstman, M. J. Kuroda, J. E. Schmitz, S. Santra, F. W. Peyerl, G. R. Krivulka, K. Beaudry, M. A. Lifton, D. A. Gorgone, D. C. Montefiori, M. G. Lewis, S. M. Wolinsky, & N. L. Letvin.
Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes.
Nature 415(6869):335-339, 2002.

M. Bauer, M. Lucchiari-Hartz, R. Maier, G. Haas, B. Autran, K. Eichmann, R. Frank, B. Maier, & A. Meyerhans.
Structural constraints of HIV-1 Nef may curtail escape from HLA-B7-restricted CTL recognition.
Immunol Lett 55:119-122, 1997.

A. Bertoletti, F. Cham, S. McAdam, T. Rostron, S. Rowland-Jones, S. Sabally, T. Corrah, K. Ariyoshi, & H. Whittle.
Cytotoxic T cells from human immunodeficiency virus type 2-infected patients frequently cross-react with different human immunodeficiency virus type 1 clades.
J Virol 72:2439-2448, 1998.

M. R. Betts, D. R. Ambrozak, D. C. Douek, S. Bonhoeffer, J. M. Brenchley, J. P. Casazza, R. A. Koup, & L. J. Picker.
Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: Relationship to viral load in untreated HIV infection.
J Virol 75:11983-11991, 2001.

T. G. Bird, R. Kaul, T. Rostron, J. Kimani, J. Embree, P. P. Dunn, J. J. Bwayo, F. A. Plummer, S. L. Rowland-Jones, & T. Dong.
HLA typing in a Kenyan cohort identifies novel class I alleles that restrict cytotoxic T-cell responses to local HIV-1 clades.
AIDS 16(14):1899-1904, 2002.

P. Borrow, H. Lewicki, X. Wei, M. S. Horwitz, N. Peffer, H. Meyers, J. A. Nelson, J. E. Gairin, B. H. Hahn, M. B. Oldstone, & G. M. Shaw.
Anti-viral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus.
Nat Med 3:205-211, 1997.
Genetic Pathways of Virus Escape from CTL Pressure Resembled Virus Escape from Antiretroviral Therapy.

F. Buseyne, S. Blanche, D. Schmitt, C. Griscelli, & Y. Riviere.
Gag-Specific Cytotoxic T Lymphocytes from Human Immunodeficiency Virus Type 1-Infected Individuals: Gag Epitopes are Clustered in Three Regions of the p24 gag Protein.
J Virol 67:694-702, 1993.

F. Buseyne, M. Fevrier, S. Garcia, M. L. Gougeon, & Y. Riviere.
Dual function of a human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte clone: inhibition of HIV replication by noncytolytic mechanisms and lysis of HIV-infected CD4+ cells.
Virology 225:248-53, 1996.

F. Buseyne, M. Fevrier, S. Garcia, M. L. Gougeon, & Y. Riviere.
Characterization of an HIV-1 p24 gag epitope recognized by a CD8+ cytotoxic T-cell clone.
Immunol Lett 55(3):145-149, 1997.

F. Buseyne.
Personal communication, 1999.

F. Buseyne, J. Le Chenadec, B. Corre, F. Porrot, M. Burgard, C. Rouzioux, S. Blanche, M. Mayaux, & Y. Riviere.
Inverse correlation between memory Gag-specific cytotoxic T lymphocytes and viral replication in human immunodeficiency virus-infected children.
J Infect Dis 186(11):1589-1596, 2002.

F. Buseyne, D. Scott-Algara, F. Porrot, B. Corre, N. Bellal, M. Burgard, C. Rouzioux, S. Blanche, & Y. Riviere.
Frequencies of ex vivo-activated human immunodeficiency virus type 1-specific gamma-interferon-producing CD8+ T cells in infected children correlate positively with plasma viral load.
J Virol 76(24):12414-22, 2002.

J. Cao.
Personal communication, 2002.

J. Cao, J. McElrath, et al.
Comprehensive analysis of HIV-1 specific IFN-γ secreting CD8 T cells in primary HIV infection.
submitted 2003.

J. Cao, J. McNevin, U. Malhotra, & M. J. McElrath.
Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection.
J Immunol 171(7):3837-3846, 2003.

M. Carrington, G. W. Nelson, M. P. Martin, T. Kissner, D. Vlahov, J. J. Goedert, R. Kaslow, S. Buchbinder, K. Hoots, & S. J. O'Brien.
HLA and HIV-1: Heterozygote advantage and B*35-Cw*04 disadvantage.
Science 283:1748-1752, 1999.

B. Culmann-Penciolelli, S. Lamhamedi-Cherradi, I. Couillin, N. Guegan, J. P. Levy, J. G. Guillet, & E. Gomard.
Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type 1 Nef protein.
J Virol 68:7336-7343, 1994.
See comments in J Virol 1995 Jan;69(1):618.

B. Culmann, E. Gomard, M.-P. Kieny, B. Guy, F. Dreyfus, A.-D. Saimot, D. Sereni, D. Sicard, & J.-P. Levy.
Six epitopes with human cytotoxic CD8+ cells in the central region of the HIV-1 Nef protein.
J Immunol 146:1560-1565, 1991.

B. Culmann.
Personal communication, 1999.

J. R. Currier, M. deSouza, P. Chanbancherd, W. Bernstein, D. L. Birx, & J. H. Cox.
Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -Cw0304 alleles.
J Virol 76(10):4971-4986, 2002.

L. C. Dai, K. West, R. Littaua, K. Takahashi, & F. A. Ennis.
Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes.
J Virol 66:3151-3154, 1992.

C. Day.
Personal communication, 2003.

M. DiBrino, K. C. Parker, D. H. Margulies, J. Shiloach, R. V. Turner, M. Garfield, W. E. B. WE, & J. E. Coligan.
Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8.
J Immunol 152:620-631, 1994.

M. DiBrino, K. C. Parker, D. H. Margulies, J. Shiloach, R. V. Turner, M. Garfield, W. E. B. WE, & J. E. Coligan.
The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues.
J Biol Chem 269, 1994.

L. Dorrell, T. Dong, G. S. Ogg, S. Lister, S. McAdam, T. Rostron, C. Conlon, A. J. McMichael, & S. L. Rowland-Jones.
Distinct recognition of non-clade B human immunodeficiency virus type 1 epitopes by cytotoxic T lymphocytes generated from donors infected in Africa.
J Virol 73:1708-1714, 1999.

R. Draenert.
Personal communication, 2002.

R. Draenert.
Personal communication, 2004.

R. Draenert, C. Brander, X. G. Yu, M. Altfeld, C. L. Verrill, M. E. Feeney, B. D. Walker, & P. J. Goulder.
Impact of intrapeptide epitope location on CD8 T cell recognition: Implications for design of overlapping peptide panels.
AIDS 18:871-876, 2004.

R. Draenert, S. Le Gall, K. J. Pfafferott, A. J. Leslie, P. Chetty, C. Brander, E. C. Holmes, S. C. Chang, M. E. Feeney, M. M. Addo, L. Ruiz, D. Ramduth, P. Jeena, M. Altfeld, S. Thomas, Y. Tang, C. L. Verrill, C. Dixon, J. G. Prado, P. Kiepiela, J. Martinez-Picado, B. D. Walker, & P. J. Goulder.
Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection.
J Exp Med 199(7):905-15, 2004.

R. Draenert, C. L. Verrill, Y. Tang, T. M. Allen, A. G. Wurcel, M. Boczanowski, A. Lechner, A. Y. Kim, T. Suscovich, N. V. Brown, M. M. Addo, & B. D. Walker.
Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection.
J Virol 78(2):630-641, 2004.

T. Dumrese, S. Stevanovic, F. H. Seeger, N. Yamada, Y. Ishikawa, K. Tokunaga, M. Takiguchi, & H. Rammensee.
HLA-A26 subtype A pockets accommodate acidic N-termini of ligands.
Immunogenetics 48:350-353, 1998.

M. Dupuis, S. K. Kundu, & T. C. Merigan.
Characterization of HLA-A*0201-restricted cytotoxic T-cell epitopes in conserved regions of the HIV type 1 gp160 protein.
J Immunol 155:2232-2239, 1995.

B. H. Edwards, A. Bansal, S. Sabbaj, J. Bakari, M. J. Mulligan, & P. A. Goepfert.
Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma.
J Virol 76(5):2298-2305, 2002.

V. H. Englehard, E. L. Huczko, W. Bodner, et al.
Peptides bound to HLA-B7 determined by mass spectrometry.
J Cell Biochem Suppl 1993 17C:56, 1993.

K. Falk, O. Rotzschke, S. Stevanovic, G. Jung, & H.-G. Rammensee.
Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules.
Nature 351:290-296, 1991.

K. Falk, O. Rotzschke, B. Grahovac, D. Schendel, S. Stevanovic, G. Jung, & H.-G. Rammensee.
Peptide motifs of HLA-B35 and -B37 molecules.
Immunogenetics 38:161-162, 1993.
Erratum in Immunogenetics 1994;39(5):379.

K. Falk, O. Rotzschke, & B. Grahavac.
Allele-specific peptide motifs of HLA-C molecules.
Proc Natl Acad Sci USA 90:12005-12009, 1994.

K. Falk, O. Rotzschke, M. Takiguchi, V. Gnau, S. Stevanovic, G. Jung, & H. Rammensee.
Peptide motifs of HLA-B38 and B39 molecules.
Immunogenetics 41:162-164, 1995.

K. Falk, O. Rotzschke, M. Takiguchi, V. Gnau, S. Stevanovic, G. Jung, & H. Rammensee.
Peptide motifs of HLA-b58, b60, b61, and b62 molecules.
Immunogenetics 41:165-168, 1995.

M. E. Feeney, K. A. Roosevelt, Y. Tang, K. J. Pfafferott, K. McIntosh, S. K. Burchett, C. Mao, B. D. Walker, & P. J. Goulder.
Comprehensive screening reveals strong and broadly directed human immunodeficiency virus type 1-specific CD8 responses in perinatally infected children.
J Virol 77(13):7492-7501, 2003.

N. Frahm, P. J. Goulder, & C. Brander.
Total assessment of HIV-specific CTL responses: Epitope clustering, processing preferences, and the impact of HIV sequence heterogeneity.
In HIV Molecular Immunology, pp. 3-21. Los Alamos National Laboratory, Theoretical Biology & Biophysics, 2002.
LAUR 03-5816.

N. Frahm & P. J. R. Goulder.
Personal communication, 2002.

N. Frahm, B. T. Korber, C. M. Adams, J. J. Szinger, R. Draenert, M. M. Addo, M. E. Feeney, K. Yusim, K. Sango, N. V. Brown, D. SenGupta, A. Piechocka-Trocha, T. Simonis, F. M. Marincola, A. G. Wurcel, D. R. Stone, C. J. Russell, P. Adolf, D. Cohen, T. Roach, A. StJohn, A. Khatri, K. Davis, J. Mullins, P. J. R. Goulder, B. D. Walker, & C. Brander.
Consistent CTL targeting of immunodominant regions in HIV across multiple ethnicities.
J Virol 78(5):2187-2200, 2004.

T. C. Friedrich, E. J. Dodds, L. J. Yant, L. Vojnov, R. Rudersdorf, C. Cullen, D. T. Evans, R. . Desrosiers, B. R. Mothe, J. Sidney, A. Sette, K. Kunstman, S. Wolinsky, M. Piatak, J. Lifson, A. L. Hughes, N. Wilson, D. H. O'Connor, & D. I. Watkins.
Reversion of CTL escape-variant immunodeficiency viruses in vivo.
Nat Med 10(3):275-281, 2004.

K. Fukada, Y. Chujoh, H. Tomiyama, K. Miwa, Y. Kaneko, S. Oka, & M. Takiguchi.
HLA-A*1101-restricted cytotoxic T lymphocyte recognition of HIV-1 Pol protein.
AIDS 13:1413-1414, 1999.

F. Gotch, S. N. McAdam, C. E. Allsopp, et al.
Cytotoxic T-cells in HIV-2 seropositive Gambians. identification of a virus specific MHC-restricted peptide epitope.
J Immunol 151:3361-3369, 1993.

P. Goulder, C. Conlon, K. McIntyre, & A. McMichael.
Identification of a novel human leukogen antigen A26-restricted epitope in a conserved region of Gag.
AIDS 10(12):1441-1443, 1996.

P. J. R. Goulder, M. Bunce, P. Krausa, K. McIntyre, S. Crowley, B. Morgan, A. Edwards, P. Giangrande, R. E. Phillips, & A. J. McMichael.
Novel, cross-restricted, conserved and immunodominant cytotoxic T lymphocyte epitopes in slow HIV type 1 infection.
AIDS Res and Hum Retroviruses 12:1691-1698, 1996.

P. J. Goulder, M. Bunce, G. Luzzi, R. E. Phillips, & A. J. McMichael.
Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses.
AIDS 11(15):1884-1886, 1997.

P. J. Goulder, A. K. Sewell, D. G. Lalloo, D. A. Price, J. A. Whelan, J. Evans, G. P. Taylor, G. Luzzi, P. Giangrande, R. E. Phillips, & A. J. McMichael.
Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation.
J Exp Med 8:1423-1433, 1997.

P. J. R. Goulder, R. E. Phillips, R. A. Colbert, S. McAdam, G. Ogg, M. A. Nowak, P. Giangrande, G. Luzzi, B. Morgan, A. Edwards, A. McMichael, & S. Rowland-Jones.
Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS.
Nature Med 3:212-216, 1997.

P. J. R. Goulder, S. W. Reid, D. A. Price, C. A. O'Callaghan, A. J. McMichael, R. E. Phillips, & E. Y. Jones.
Combined structural and immunological refinement of HIV-1 HLA-B8 restricted cytotoxic T lymphocyte epitopes.
Eur J Immunol 27:1515-1521, 1997.

P. J. R. Goulder.
Personal communication, 1999.

P. J. Goulder, C. Brander, K. Annamalai, N. Mngqundaniso, U. Govender, Y. Tang, S. He, K. E. Hartman, C. A. O'Callaghan, G. S. Ogg, M. A. Altfeld, E. S. Rosenberg, H. Cao, S. A. Kalams, M. Hammond, M. Bunce, S. I. Pelton, S. A. Burchett, K. McIntosh, H. M. Coovadia, & B. D. Walker.
Differential narrow focusing of immunodominant human immunodeficiency virus gag-specific cytotoxic T-lymphocyte responses in infected African and Caucasoid adults and children.
J Virol 74:5679-5690, 2000.

P. J. Goulder, Y. Tang, S. I. Pelton, & B. D. Walker.
HLA-B57-restricted CTL activity in a single infected subject towards two optimal HIV epitopes, one of which is entirely contained within the other.
J Virol 74:5291-5299, 2000.

P. J. Goulder, M. M. Addo, M. A. Altfeld, E. S. Rosenberg, Y. Tang, U. Govender, N. Mngqundaniso, K. Annamalai, T. U. Vogel, M. Hammond, M. Bunce, H. M. Coovadia, & B. D. Walker.
Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by EliSpot and intracellular cytokine staining assays.
J Virol 75(3):1339-1347, 2001.

G. Haas, U. Plikat, P. Debre, M. Lucchiari, C. Katlama, Y. Dudoit, O. Bonduelle, M. Bauer, H. Ihlenfeldt, G. Jung, B. Maier, A. Meyerhans, & B. Autran.
Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo.
J Immunol 157:4212-4221, 1996.

G. Haas, A. Samri, E. Gomard, A. Hosmalin, J. Duntze, J. M. Bouley, H. G. Ihlenfeldt, C. Katlama, & B. Autran.
Cytotoxic T cell responses to HIV-1 reverse transcriptase, integrase and protease.
AIDS 12(12):1427-36, 1998.

G. Haas.
Personal communication, 1999.

E. Harrer, T. Harrer, P. Barbosa, M. Feinberg, R. P. Johnson, S. Buchbinder, & B. D. Walker.
Recognition of the highly conserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restricted cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor.
J Inf Dis 173:476-479, 1996.

T. Harrer, E. Harrer, S. A. Kalams, P. Barbosa, A. Trocha, R. P. Johnson, T. Elbeik, M. B. Feinberg, S. P. Buchbinder, & B. D. Walker.
Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load.
J Immunol 156:2616-2623, 1996.

T. Harrer, E. Harrer, P. Barbosa, F. Kaufmann, R. Wagner, S. Bruggemann, J. R. Kalden, M. Feinberg, R. P. Johnson, S. Buchbinder, & B. D. Walker.
Recognition of two overlapping CTL epitopes in HIV-1 p17 by CTL from a long-term nonprogressing HIV-1-infected individual.
J Immunol 161:4875-81, 1998.

C. Hay.
Personal communication, 1999.

A. V. Hill, J. Elvin, A. C. Willis, M. Aidoo, C. E. Allsopp, F. M. Gotch, X. M. Gao, M. Takiguchi, B. M. Greenwood, A. R. Townsend, et al.
Molecular analysis of the association of HLA-B53 and resistance to severe malaria (see comments).
Nature 360:434-439, 1992.

I. Honeyborne.
Personal communication, 2003.

M. S. Hossain, H. Tomiyama, T. Inagawa, B. Sriwanthana, S. Oka, & M. Takiguchi.
HLA-A*3303-restricted cytotoxic T lymphocyte recognition for novel epitopes derived from the highly variable region of the HIV-1 Env protein.
AIDS 15(16):2199-2201, 2001.

Y. Ikeda-Moore, H. Tomiyama, M. Ibe, S. Oka, K. Miwa, Y. Kaneko, & M. Takiguchi.
Identification of a novel HLA-A24-restricted cytotoxic T-lymphocyte epitope derived from HIV-1 Gag protein.
AIDS 12:2073-2074, 1998.

T. S. Jardetzky, W. S. Lane, R. A. Robinson, D. R. Madden, & D. C. Wiley.
Identification of self peptides bound to purified HLA-B27.
Nature 353:326-329, 1991.

X. Jin, C. G. Roberts, D. F. Nixon, J. T. Safrit, L. Q. Zhang, Y. X. Huang, N. Bhardwaj, B. Jesdale, A. S. DeGroot, & R. A. Koup.
Identification of subdominant cytotoxic T lymphocyte epitopes encoded by autologous HIV type 1 sequences, using dendritic cell stimulation and computer-driven algorithm.
AIDS Res Hum Retroviruses 16:67-76, 2000.

R. P. Johnson, A. Trocha, L. Yang, G. P. Mazzara, D. L. Panicali, T. M. Buchanan, & B. D. Walker.
HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells.
J Immunol 147:1512-1521, 1991.

R. P. Johnson, A. Trocha, T. M. Buchanan, & B. D. Walker.
Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: Definition of minimum epitopes and analysis of the effects of sequence variation.
J Exp Med 175:961-971, 1992.

R. P. Johnson, A. Trocha, T. M. Buchanan, & B. D. Walker.
Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone.
J Virol 67:438-445, 1993.

R. P. Johnson, S. A. Hammond, A. Trocha, R. F. Siliciano, & B. D. Walker.
Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine.
J Virol 68:3145-3153, 1994.

R. P. Johnson & B. D. Walker.
CTL in HIV-1 infection: Responses to structural proteins.
Curr Topics Microbiol Immunol 189:35-63, 1994.

R. P. Johnson.
Personal communication, 1999.

A. D. Kelleher, C. Long, E. C. Holmes, R. L. Allen, J. Wilson, C. Conlon, C. Workman, S. Shaunak, K. Olson, P. Goulder, C. Brander, G. Ogg, J. S. Sullivan, W. Dyer, I. Jones, A. J. McMichael, S. Rowland-Jones, & R. E. Phillips.
Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses.
J Exp Med 193(3):375-386, 2001.

P. Kiepiela & P. Goulder.
Personal communication, 2002.

P. Kiepiela.
Personal communication, 2004.

P. Klenerman, G. Luzzi, K. McIntyre, R. Phillips, & A. McMichael.
Identification of a novel HLA-A25 restricted epitope in a conserved region of p24 gag (positions 71-80).
AIDS 10:348-350, 1996.

P. Klenerman, Y. Wu, & R. Phillips.
HIV: Current opinion in escapology.
Curr Opin Microbiol 5(4):408-413, 2002.

S. Koenig, T. R. Fuerst, L. V. Wood, R. M. Woods, J. A. Suzich, G. M. Jones, V. F. de la Cruz, R. T. Davey, Jr., S. Venkatesan, B. Moss, W. E. Biddison, & A. S. Fauci.
Mapping the fine specificity of a cytotoxic T cell response to HIV-1 Nef protein.
J Immunol 145:127-135, 1990.

I. Kurane & K. West.
Personal communication, 1999.

A. J. Leslie, K. J. Pfafferott, P. Chetty, R. Draenert, M. M. Addo, M. Feeney, Y. Tang, E. C. Holmes, T. Allen, J. G. Prado, M. Altfeld, C. Brander, C. Dixon, D. Ramduth, P. Jeena, S. A. Thomas, A. St. John, T. A. Roach, B. Kupfer, G. Luzzi, A. Edwards, G. Taylor, H. Lyall, G. Tudor-Williams, V. Novelli, J. Martinez-Picado, P. Kiepiela, B. D. Walker, & P. J. Goulder.
HIV evolution: CTL escape mutation and reversion after transmission.
Nat Med 10(3):282-289, 2004.

D. Lewinsohn.
Personal communication, 1999.

D. Lewinsohn & S. Riddell.
Personal communication, 1999.

J. Lieberman, J. A. Fabry, M.-C. Kuo, P. Earl, B. Moss, & P. R. Skolnik.
Cytotoxic T lymphocytes from HIV-1 seropositive individuals recognize immunodominant epitopes in gp160 and reverse transcriptase.
J Immunol 148:2738-2747, 1992.

J. Lieberman.
Personal communication, 1999.

R. Maier, K. Falk, O. Rotzschke, B. Maier, V. Gnau, S. Stevanovic, G. Jung, H.-G. Rammensee, & A. Meyerhans.
Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool sequencing.
Immunogenetics 40:306-308, 1994.

B. Maier & B. Autran.
Personal communication, 1999.

D. McKinney, D. Lewinson, S. Riddell, P. Greenberg, & D. Mosier.
The antiviral activity of HIV-specific CD8+ CTL clones is limited by elimination due to encounter with HIV-infected targets.
J Immuno 163:861-867, 1999.

S. A. Migueles, A. C. Laborico, W. L. Shupert, M. S. Sabbaghian, R. Rabin, C. W. Hallahan, D. Van Baarle, S. Kostense, F. Miedema, M. McLaughlin, L. Ehler, J. Metcalf, S. Liu, & M. Connors.
HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors.
Nat Immunol 3(11):1061-1068, 2002.

D. Nixon, A. Townsend, J. Elvin, C. Rizza, J. Gallway, & A. McMichael.
Hiv-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides.
Nature 336:484-487, 1988.

D. F. Nixon, D. Douek, P. J. Kuebler, X. Jin, M. Vesanen, S. Bonhoeffer, Y. Cao, R. A. Koup, D. D. Ho, & M. Markowitz.
Molecular tracking of an human immunodeficiency virus nef specific cytotoxic T cell clone shows persistence of clone-specific T cell receptor DNA but not mRNA following early combination antiretroviral therapy.
Immunol Lett 66:219-28, 1999.

V. Novitsky, N. Rybak, M. F. McLane, P. Gilbert, P. Chigwedere, I. Klein, S. Gaolekwe, S. Y. Chang, T. Peter, I. Thior, T. Ndung'u, F. Vannberg, B. T. Foley, R. Marlink, T. H. Lee, & M. Essex.
Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific EliSpot-based cytotoxic T-lymphocyte responses for AIDS vaccine design.
J Virol 75(19):9210-9228, 2001.

V. Novitsky, H. Cao, N. Rybak, P. Gilbert, M. F. McLane, S. Gaolekwe, T. Peter, I. Thior, T. Ndung'u, R. Marlink, T. H. Lee, & M. Essex.
Magnitude and frequency of cytotoxic T-lymphocyte responses: Identification of immunodominant regions of human immunodeficiency virus type 1 subtype C.
J Virol 76(20):10155-10168, 2002.

G. S. Ogg, X. Jin, S. Bonhoeffer, P. R. Dunbar, M. A. Nowak, S. Monard, J. P. Segal, Y. Cao, S. L. Rowland-Jones, V. Cerundolo, A. Hurley, M. Markowitz, D. D. Ho, D. F. Nixon, & A. J. McMichael.
Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA.
Science 279:2103-6, 1998.

A. Oxenius, B. K. Jakobsen, P. J. Easterbrook, J. M. Boulter, T. Tun, A. Waters, J. Agudelo, M. Barnardo, R. E. Phillips, & D. A. Price.
Complete mapping of a novel HLA A*6801-restricted HIV-1 Tat epitope directly with a rapid modified enzyme-linked immunospot assay.
AIDS 16(9):1285-1287, 2002.

K. C. Parker, M. A. Bednarek, L. K. Hull, U. Utz, B. C. H. J. Zweerink, W. E. Biddison, & J. E. Coligan.
Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2.
J Immunol 149, 1992.

K. C. Parker, M. A. Bednarek, & J. E. Coligan.
Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains.
J Immunol 152, 1994.

D. A. Price, P. J. Goulder, P. Klenerman, A. K. Sewell, P. J. Easterbrook, M. Troop, C. R. Bangham, & R. E. Phillips.
Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection.
Proc Natl Acad Sci USA 94:1890-1895, 1997.

H.-G. Rammensee, T. Friede, & S. Stevanovic.
MHC ligands and peptide motifs: First listing.
Immunogenetics 41:178-228, 1995.

H.-G. Rammensee, J. Bachmann, N. P. N. Emmerich, O. A. Bachor, & S. Stevanovic.
SYFPEITHI: Database for MHC ligands and peptide motifs.
Immunogenetics 50(3-4):213-219, 1999.

W. R. Rodriguez, M. M. Addo, A. Rathod, C. A. Fitzpatrick, X. G. Yu, B. Perkins, E. S. Rosenberg, M. Altfeld, & B. D. Walker.
CD8+ T lymphocyte responses target functionally important regions of protease and integrase in HIV-1 infected subjects.
Journal of Translational Medicine in press, 2004.

S. L. Rowland-Jones, S. H. Powis, J. Sutton, I. Mockridge, F. M. Gotch, N. Murray, A. B. Hill, W. M. Rosenberg, J. Trowsdale, & A. J. McMichael.
An antigen processing polymorphism revealed by HLA-B8-restricted cytotoxic T lymphocytes which does not correlate with TAP gene polymorphism.
Eur J Immunol 23:1999-2004, 1993.

S. L. Rowland-Jones, J. Sutton, K. Ariyoshi, T. Dong, F. Gotch, S. McAdam, D. Whitby, S. Sabally, A. Gallimore, T. Corrah, M. Takiguchi, T. Schultz, A. McMichael, & H. Whittle.
HIV-specific cytotoxic T cells in HIV-exposed but uninfected Gambian women.
Nature Medicine 1:59-64, 1995.

S. L. Rowland-Jones, T. Dong, K. R. Fowke, J. Kimani, P. Krausa, H. Newell, T. Blanchard, K. Ariyoshi, J. Oyugi, E. Ngugi, J. Bwayo, K. S. MacDonald, A. J. McMichael, & F. A. Plummer.
Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi.
J Clin Invest 102(9):1758-1765, 1998.

S. Rowland-Jones.
Personal communication, 1999.

S. Sabbaj, A. Bansal, G. D. Ritter, C. Perkins, B. H. Edwards, E. Gough, J. Tang, J. J. Szinger, B. Korber, C. M. Wilson, R. A. Kaslow, M. J. Mulligan, & P. A. Goepfert.
Cross-reactive CD8+ T cell epitopes identified in US adolescent minorities.
J Acquir Immune Defic Syndr 33(4):426-438, 2003.

S. Sabbaj, D. Ritter, & P. Goepfert et al.
personal communication.
Personal communication, 2004.

J. T. Safrit, C. A. Andrews, T. Zhu, D. D. Ho, & R. A. Koup.
Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: Recognition of autologous virus sequences within a conserved immunodominant epitope.
J Exp Med 179:463-472, 1994.

J. T. Safrit, A. Y. Lee, C. A. Andrews, & R. A. Koup.
A region of the third variable loop of HIV-1 gp120 is recognized by HLA-B7-restricted CTLs from two acute seroconversion patients.
J Immunol 153:3822-3830, 1994.

F. H. Seeger, D. Arnold, T. Dumrese, H. de la Salle, D. Fricker, H. Schild, H. G. Rammensee, & S. Stevanovic.
The HLA-B*1516 motif demonstrates HLA-B-specific P2 pocket characteristics.
Immunogenetics 48:156-160, 1998.

P. Shankar, J. A. Fabry, D. M. Fong, & J. Lieberman.
Three regions of HIV-1 gp160 contain clusters of immunodominant CTL epitopes.
Immunol Lett 52:23-30, 1996.

H. Shiga, T. Shioda, H. Tomiyama, Y. Takamiya, S. Oka, S. Kimura, Y. Yamaguchi, T. Gojoubori, H. G. Rammensee, K. Miwa, & M. Takiguchi.
Identification of multiple HIV-1 cytotoxic T cell epitopes presented by human leukocyte antigen B35 molecule.
AIDS 10:1075-1083, 1996.

N. V. Sipsas, S. A. Kalams, A. Trocha, S. He, W. A. Blattner, B. D. Walker, & R. P. Johnson.
Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1.
J Clin Invest 99:752-62, 1997.

J. Sutton, S. Rowland-Jones, W. Rosenberg, D. Nixon, F. Gotch, X.-M. Gao, N. Murray, A. Spoonas, P. Driscoll, M. Smith, A. Willis, & A. McMichael.
A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides.
Eur J Immunol 23:447-453, 1993.

K. Takahashi, L.-C. Dai, T. R. Fuerst, W. E. Biddison, P. L. Earl, B. Moss, & F. A. Ennis.
Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8+ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein.
Proc Natl Acad Sci USA 88:10277-10281, 1991.

S. C. Threlkeld, P. A. Wentworth, S. A. Kalams, B. M. Wilkes, D. J. Ruhl, E. Kepgh, J. Sidney, S. Southwood, B. D. Walker, & A. Sette.
Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily.
J Immunol 159(4):1648-1657, 1997.

H. Tomiyama, T. Sakaguchi, K. Miwa, S. Oka, A. Iwamoto, Y. Kaneko, & M. Takiguchi.
Identification of multiple HIV-1 CTL epitopes presented by HLA-B*5101.
Hum Immunol 60:177-186, 1999.

A. Trocha.
Personal communication, 2002.

T. J. Tsomides, B. D. Walker, & H. N. Eisen.
An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein.
Proc Natl Acad Sci USA 88:11276-11280, 1991.

C. A. van Baalen, M. R. Klein, R. C. Huisman, M. E. Dings, S. R. K. Garde, A. M. Geretti, R. Gruters, C. A. van Els, F. Miedema, & A. D. Osterhaus.
Fine-specificity of cytotoxic T lymphocytes which recognize conserved epitopes of the Gag protein of human immunodeficiency virus type 1.
J Gen Virol 77:1659-1665, 1996.

S. H. van der Burg, M. R. Klein, O. Pontesilli, A. M. Holwerda, J. Drijfhout, W. M. Kast, F. Miedema, & C. J. M. Melief.
HIV-1 reverse transcriptase-specific CTL against conserved epitopes do not protect against progression to AIDS.
J Immunol 159:3648-3654, 1997.

B. D. Walker, C. Flexner, K. Birch-Limberger, L. Fisher, T. J. Paradis, A. Aldovini, R. Young, B. Moss, & R. T. Schooley.
Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type 1.
Proc Natl Acad Sci USA 86:9514-9518, 1989.

B. M. Wilkes.
Personal communication, 1999.

B. M. Wilkes & D. J. Ruhl.
Personal communication, 1999.

B. M. Wilkes, D. J. Ruhl, & P. J. Goulder.
Personal communication, 1999.

C. C. Wilson, S. A. Kalams, B. M. Wilkes, D. J. Ruhl, F. Gao, B. H. Hahn, I. C. Hanson, K. Luzuriaga, S. Wolinsky, R. Koup, S. P. Buchbinder, R. P. Johnson, & B. D. Walker.
Overlapping epitopes in human immunodeficiency virus type 1 gp120 presented by HLA A, B, and C molecules: Effects of viral variation on cytotoxic T-lymphocyte recognition.
J Virol 71:1256-1264, 1997.

C. C. Wilson.
Personal communication, 1999.

C. C. Wilson, R. C. Brown, B. T. Korber, B. M. Wilkes, D. J. Ruhl, D. Sakamoto, K. Kunstman, K. Luzuriaga, I. C. Hanson, S. M. Widmayer, A. Wiznia, S. Clapp, A. J. Ammann, R. A. Koup, S. M. Wolinsky, & B. D. Walker.
Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: The ariel project for the prevention of transmission of HIV from mother to infant.
J Virol 73:3975-3985, 1999.

O. O. Yang, S. A. Kalams, A. Trocha, H. Cao, A. Luster, R. P. Johnson, & B. D. Walker.
Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: Evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms.
J Virol 71:3120-3188, 1997.

Y. Yokomaku, H. Miura, H. Tomiyama, A. Kawana-Tachikawa, M. Takiguchi, A. Kojima, Y. Nagai, A. Iwamoto, Z. Matsuda, & K. Ariyoshi.
Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection.
J Virol 78(3):1324-1332, 2004.

X. G. Yu, M. M. Addo, E. S. Rosenberg, W. R. Rodriguez, P. K. Lee, C. A. Fitzpatrick, M. N. Johnston, D. Strick, P. J. R. Goulder, B. D. Walker, & M. Altfeld.
Consistent patterns in the development and immunodominance of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection.
J Virol 76(17):8690-8701, 2002.

X. G. Yu, H. Shang, M. M. Addo, R. L. Eldridge, M. N. Phillips, M. E. Feeney, D. Strick, C. Brander, P. J. R. Goulder, E. S. Rosenberg, B. D. Walker, & M. Altfeld.
Important contribution of p15 Gag-specific responses to the total Gag-specific CTL responses.
AIDS 16(3):321-328, 2002.

Q.-I. Zhang, R. Gavioli, G. Klein, & M. G. Masucci.
An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins.
Proc Natl Acad Sci USA 90:2217-2221, 1993.


Partners AIDS Research Center, Massachusetts General Hospital, Boston, USA
The Peter Medawar Building for Pathogen Research, Oxford, UK
In HIV Immunology and HIV/SIV Vaccine Databases 2003. Bette T. M. Korber, Christian Brander, Barton F. Haynes, Richard Koup, John P. Moore, Bruce D. Walker, and David I. Watkins, editors. Publisher: Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico. LA-UR 04-8162. pp. 3-24.

last modified: Mon Apr 19 14:41 2010

Questions or comments? Contact us at

Operated by Triad National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration
© Copyright Triad National Security, LLC. All Rights Reserved | Disclaimer/Privacy

Dept of Health & Human Services Los Alamos National Institutes of Health