Found 1 matching record:
Displaying record number 2655
Download this epitope
record as JSON.
MAb ID |
CH01 |
HXB2 Location |
gp160 |
gp160 Epitope Map
|
Author Location |
gp160(126-196) |
Epitope |
|
Ab Type |
gp120 V2 // V2 glycan(V2g) // V2 apex, quaternary structure |
Neutralizing |
P View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human(IgG1) |
Patient |
CH0219 |
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody generation, antibody interactions, antibody lineage, antibody polyreactivity, assay or method development, autoantibody or autoimmunity, binding affinity, broad neutralizer, computational epitope prediction, escape, glycosylation, junction or fusion peptide, memory cells, neutralization, review, structure, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity |
Notes
Showing 37 of
37 notes.
-
CH01: The Chinese HIV Reference Laboratory produced 124 pseudoviruses from patients with subype B, BC, and CRF01 infections. These viruses were assigned to tiers based on their neutralization by a panel of patient sera. Their neutralization sensitivities were also measured against a panel of well-characterized mAbs (2F5, b12, 2G12, 4E10, 10E8, VRC01, VRC-CH31, CH01, PG9, PG16, PGT121, PGT126).
Nie2020
(assay or method development, neutralization)
-
CH01: Extensive structural and biochemical analyses demonstrated that PGT145 achieves recognition and neutralization by targeting quaternary structure of the cationic trimer apex with long and unusually stabilized anionic β-hairpin HCDR3 loops. In BG505.Env.C2 alanine-scanning neutralization assays, CH01 had similar results as PG9, consistent with both CH01 and PG9 being members of hammerhead-class, and very dissimilar results to PGT145-like antibodies.
Lee2017
(antibody binding site, neutralization)
-
CH01: To reduce local V2 flexibility and improve the binding of V2-dependent bNAbs and germline precursor bNAbs, the authors designed BG505 SOSIP.664 trimer variants whose V1 and V2 domains were stabilized by introducing disulfide bonds either within the V2 loop or between the V1 and V2 loops. The resulting SOSIP trimer variants — E153C/K178C, E153C/K178C/G152E and I184C/E190C — have improved reactivity with V2 bNAbs and their inferred germline precursors and are more sensitive to neutralization by V2 bNAbs. PGT121, PG9, PG16, and CH01 bound better to the E153C/R178C/G152E mutant than to SOSIP.664. The I184C/E190C mutant bound all the V2 bNAbs (PG9, PG16, PGT145, VRC26.09, and CH01) better than SOSIP.664. I184C/E190C was more sensitive to neutralization by V2 bNAbs compared with BG505 (by 5-fold for PG9, 3-fold for PG16, 6-fold for CH01, and 3-fold for PGDM1400).
deTaeye2019
(antibody interactions, variant cross-reactivity, binding affinity, structure, broad neutralizer)
-
CH01: This study looks at the role of somatic mutations within antibody variable and framework regions (FWR) in bNAbs and how these mutations alter thermostability and neutralization as the Ab lineage reaches maturation. The emergence and selection of different mutations in the complementarity-determining and framework regions are necessary to maintain a balance between antibody function and stability. The study shows that all major classes of bNAbs (DH2070, CH103, CH235 etc.) have lower thermostability than their corresponding inferred UCA antibodies.
Henderson2019
(neutralization, antibody lineage, broad neutralizer)
-
CH01: This study demonstrated that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens eliciting Ab responses with greater neutralization breadth. Data from four large virus panels were used to comprehensively map viral signatures associated with bNAb sensitivity, hypervariable region characteristics, and clade effects. The bNAb signatures defined for the V2 epitope region were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine which resulted in increased breadth of NAb responses compared with Env 459C alone. CH01 was used for analyzing clade sensitivity, structural mapping and analyses of Ab signatures.
Bricault2019
(antibody binding site, vaccine antigen design, computational epitope prediction, broad neutralizer)
-
CH01: This review summarizes current advances in antibody lineage-based design and epitope-based vaccine design. Antibody lineage-based design is described for VRC01, PGT121 and PG9 antibody classes, and epitope-based vaccine design is described for the CD4-binding site, as well as fusion peptide and glycan-V3 cites of vulnerability.
Kwong2018
(antibody binding site, vaccine antigen design, vaccine-induced immune responses, review, antibody lineage, broad neutralizer, junction or fusion peptide)
-
CH01: This review discusses the identification of super-Abs, where and how such Abs may be best applied and future directions for the field. Recombinant native-like HIV Env trimers have enabled the identification of CH01, a potent ‘PG9-class’ bNAb. Antigenic region V2 apex (Table:1).
Walker2018
(antibody binding site, review, broad neutralizer)
-
CH01: The authors selected an optimal panel of diverse HIV-1 envelope glycoproteins to represent the antigenic diversity of HIV globally in order to be used as antigen candidates. The selection was based on genetic and geographic diversity, and experimentally and computationally evaluated humoral responses. The eligibility of the envelopes as vaccine candidates was evaluated against a panel of antibodies for breadth, affinity, binding and durability of vaccine-elicited responses. The antigen panel was capable of detecting the spectrum of V2-specific antibodies that target epitopes from the V2 strand C (V2p), the integrin binding motif in V2 (V2i), and the quaternary epitope at the apex of the trimer (V2q).
Yates2018
(vaccine antigen design, vaccine-induced immune responses, binding affinity)
-
CH01: The effects of 16 glycoengineering (GE) methods on the sensitivities of 293T cell-produced pseudoviruses (PVs) to a large panel of bNAbs were investigated. Some bNAbs were dramatically impacted. PG9 and CAP256.09 were up to ˜30-fold more potent against PVs produced with co-transfected α-2,6 sialyltransferase. PGT151 and PGT121 were more potent against PVs with terminal SA removed. 35O22 and CH01 were more potent against PV produced in GNT1-cells. The effects of GE on bNAbs VRC38.01, VRC13 and PGT145 were inconsistent between Env strains, suggesting context-specific glycan clashes. Overexpressing β-galactosyltransferase during PV production 'thinned' glycan coverage, by replacing complex glycans with hybrid glycans. This impacted PV sensitivity to some bNAbs. Maximum percent neutralization by excess bnAb was also improved by GE. Remarkably, some otherwise resistant PVs were rendered sensitive by GE. Germline-reverted versions of some bnAbs usually differed from their mature counterparts, showing glycan indifference or avoidance, suggesting that glycan binding is not germline-encoded but rather, it is gained during affinity maturation. Overall, these GE tools provided new ways to improve bnAb-trimer recognition that may be useful for informing the design of vaccine immunogens to try to elicit similar bnAbs.
Crooks2018
(vaccine antigen design, antibody lineage)
-
CH01: A rare glycan hole at the V2 apex is enriched in HIV isolates neutralized by inferred precursors of prototype V2-apex bNAbs. To investigate whether this feature could focus neutralizing responses onto the apex bnAb region, rabbits were immunized with soluble trimers adapted from these Envs. Potent autologous tier 2 neutralizing responses targeting basic residues in strand C of the V2 region, which forms the core epitope for V2-apex bnAbs, were observed. Neutralizing monoclonal antibodies (mAbs) derived from these animals display features promising for subsequent broadening of the response. Four human anti-V2 bnAbs (PG9, CH01, PGT145, and CAP256.09) were used as a basis of comparison.
Voss2017
(vaccine antigen design)
-
CH01: The first cryo-EM structure of a cross-linked vaccine antigen was solved. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a bNAb PGV04 Fab fragment revealed how cross-linking affects key properties of the trimer. SOSIP and GLA-SOSIP trimers were compared for antigenicity by ELISA, using a large panel of mAbs previously determined to react with BG505 Env. Non-NAbs globally lost reactivity (7-fold median loss of binding), likely because of covalent stabilization of the cross-linked ‘closed’ form of the GLA-SOSIP trimer that binds non-NAbs weakly or not at all. V3-specific non-NAbs showed 2.1–3.3-fold reduced binding. Three autologous rabbit monoclonal NAbs to the N241/N289 ‘glycan-hole’ surface, showed a median ˜1.5-fold reduction in binding. V3 non-NAb 4025 showed residual binding to the GLA-SOSIP trimer. By contrast, bNAbs like CH01 broadly retained reactivity significantly better than non-NAbs, with exception of PGT145 (3.3-5.3 fold loss of binding in ELISA and SPR).
Schiffner2018
(vaccine antigen design, binding affinity, structure)
-
CH01: Assays of poly- and autoreactivity demonstrated that broadly neutralizing NAbs are significantly more poly- and autoreactive than non-neutralizing NAbs. CH01 is neither autoreactive nor polyreactive.
Liu2015a
(autoantibody or autoimmunity, antibody polyreactivity)
-
CH01: The next generation of a computational neutralization fingerprinting (NFP) being used as a way to predict polyclonal Ab responses to HIV infection is presented. A new panel of 20 pseudoviruses, termed f61, was developed to aid in the assessment of experimental neutralization. This panel was used to assess 22 well-characterized bNAbs and mixtures thereof (HJ16, VRC01, 8ANC195, IGg1b12, PGT121, PGT128, PGT135, PG9, PGT151, 35O22, 10E8, 2F5, 4E10, VRC27, VRC-CH31, VRC-PG20, PG04, VRC23, 12A12, 3BNC117, PGT145, CH01). The new algorithms accurately predicted VRC01-like and PG9-like antibody specificities.
Doria-Rose2017
(neutralization, computational epitope prediction)
-
CH01: This review classified and mapped the binding regions of 32 bNAbs isolated 2010-2016.
Wu2016
(review)
-
CH01: Env trimer BG505 SOSIP.664 as well as the clade B trimer B41 SOSIP.664 were stabilized using a bifunctional aldehyde (glutaraldehye, GLA) or a heterobifunctional cross-linker, EDC/NHS with modest effects on antigenicity and barely any on biochemistry or structural morphology. ELISA, DSC and SPR were used to test recognition of the trimers by bNAbs, which was preserved and by weakly NAbs or non-NAbs, which was reduced. Cross-linking partially preserves quaternary morphology so that affinity chromatography by positive selection using quaternary epitope-specific bNAabs, and negative selection using non-NAbs, enriched antigenic characteristics of the trimers. Binding of bNAb CH01 to trimers was minimally affected by trimer cross-linking.
Schiffner2016
(assay or method development, binding affinity, structure)
-
A new trimeric immunogen, BG505 SOSIP.664 gp140, was developed that bound and activated most known neutralizing antibodies but generally did not bind antibodies lacking neuralizing activity. This highly stable immunogen mimics the Env spike of subtype A transmitted/founder (T/F) HIV-1 strain, BG505. Anti-V1/V2 glycan bNAb CH01, neutralized BG505.T332N, the pseudoviral equivalent of the immunogen BG505 SOSIP.664 gp140, and was shown to recognize and bind the immunogen too.
Sanders2013
(assay or method development, neutralization, binding affinity)
-
CH01: The neutralization of 14 bnAbs was assayed against a global panel of 12 or 17 Env pseudoviruses. From IC50, IC80, IC90, and IC99 values, the slope of the dose-response curve was calculated. Each class of Ab had a fairly consistent slope. Neutralization breadth was strongly correlated with slope. An IIP (Instantaneous Inhibitory Potential) value was calculated, based on both the slope and IC50, and this value may be predictive of clinical efficacy. CH01, a V2-glycan bnAb belonged to a group with slopes <1.
Webb2015
(neutralization)
-
CH01: This study evaluated the binding of 15 inferred germline (gl) precursors of bNAbs that are directed to different epitope clusters, to 3 soluble native-like SOSIP.664 Env trimers - BG505, B41 and ZM197M. The trimers bound to some germline precursors, particularly those of V1V2-targeted Abs. These trimers may be useful for designing immunogens able to target gl precursors. V1/V2 apex-binding gl-CH01 precursor bound to 2/3 trimers, BG505 and B41.
Sliepen2015
(binding affinity, antibody lineage)
-
CH01: A large cross-sectional study of sera from 205 ART-naive patients infected with different HIV clades was tested against a panel of 219 cross-clade Env-pseudotyped viruses. Their neutralization was compared to the neutralization of 10 human bNAbs (10E8, 4E10, VRC01, PG9, PGT145, PGT128, 2F5, CH01, b12, 2G12) tested with a panel of 119 Env-pseudotyped viruses. Results from b12 and 2G12 suggested that these bnAbs may not be as broadly neutralizing as previously thought. CH01 neutralized 50% of the 199 viruses tested.
Hraber2014
(neutralization)
-
CH01: The study compared binding and neutralization of 4 V2 apex bnAbs (PG9, CH01, PGT145, and CAP256.VRC26.09). All recognized a core epitope on V1/V2 (the N-linked glycan at N160 and cysteine-linked lysine rich, HXB2:126-196), which includes residue N160 as well as N173. The lysine rich region on strand C of HIV-1 V2 that is key for binding to the nAb contains the sequence (168)KKQK(171). Inferred germline versions of three of the prototype bnAbs were able to neutralize specific Env isolates. Soluble Env derived from one of these isolates was shown to form a well-ordered Env trimer that could serve as an immunogen to initiate a V2-apex bnAb response.
Andrabi2015
(antibody binding site, neutralization, vaccine antigen design, antibody lineage)
-
CH01: An atomic-level understanding of V1V2-directed bNAb recognition in a donor was used in the design of V1V2 scaffolds capable of interacting with quaternary-specific V1V2-directed bNAbs. The cocrystal structure of V1V2 with antibody CH03 from a second donor is reported and Env interactions of antibody CAP256-VRC26 from a third donor are modeled. V1V2-directed bNAbs used strand-strand interactions between a protruding Ab loop and a V1V2 strand but differed in their N-glycan recognition. Ontogeny analysis indicated that protruding loops develop early, and glycan interactions mature over time. CH01 did not bind to the monomeric V1V2 scaffolds. The quaternary dependence might be one possible explanation for this lack of recognition.
Gorman2016
(glycosylation, structure, antibody lineage)
-
CH01: The sequential development of three distinct bnAb responses within a single host, CAP257, over 4.5 years of infection has been described. It showed how escape from the first wave of Abs targeting V2 exposed a second site that was the stimulus for a new wave of glycan dependent bnAbs against the CD4 binding site. These data highlighted how Ab evolution in response to viral escape mutations served to broaden the host immune response to two epitopes. A third wave of neutralization targeting an undefined epitope that did not appear to overlap with the four known sites of vulnerability on the HIV-1 envelope has been reported. These data supported the design of templates for sequential immunization strategies.
Wibmer2013
(escape)
-
CH01: The V2 region where CH01, an anti-V1V2 bNAb binds exists as a beta-strand.
Haynes2013
(review)
-
CH01: The infectious virion (iVirions) capture index (IVCI) of different Abs have been determined. bnAbs captured higher proportions of iVirions compared to total virus particles (rVirions) indicating the capacity, breadth and selectively of bnAbs to capture iVirions. IVCI was additive with a mixture of Abs, providing proof of concept for vaccine-induced effect of improved capacity. CH01 showed IVCI of 2.4 and captured 3 out of the 4 strains tested.
Liu2014
(binding affinity)
-
CH01: Binding properties of a synthesized V1V2 glycopeptide immunogen that selectively targets bnAbs' naive B cells is reported. The unmutated common ancestor (UCA) of CH01 showed nanomolar affinity to V1V2 bearing Man5GlcNAc2 glycan units. Binding of CH01 was undetectable however in the absence of the V2 backbone peptide suggesting a very weak binding affinity to oligomannose glycan alone. Disulfide-linked dimer formation was also required for CH01 binding to V1V2.
Alam2013
(glycosylation)
-
CH01: A statistical model selection method was used to identify a global panel of 12 reference Env clones among 219 Env-pseudotyped viruses that represent the spectrum of neutralizing activity seen with sera from 205 chronically HIV-1-infected individuals. This small final panel was also highly sensitive for detection of many of the known bNAbs, including this one. The small panel of 12 Env clones should facilitate assessments of vacine-elicited NAbs.
Decamp2014
(assay or method development)
-
CH01: The conserved central region of gp120 V2 contains sulfated tyrosines (Tys173 and Tys177) that in the CD4-unbound prefusion state mediate intramolecular interaction between V2 and the conserved base of the third variable loop (V3), functionally mimicking sulfated tyrosines in CCR5 and anti-coreceptor-binding-site antibodies such as 412d. Enhancement of tyrosine sulfation decreased binding and neutralization of HIV-1 BaL by monomeric sCD4, 412d, and anti-V3 antibodies and increased recognition by the trimer-preferring antibodies PG9, PG16, CH01, and PGT145. Conversely, inhibition of tyrosine sulfation increased sensitivity to soluble CD4, 412d, and anti-V3 antibodies and diminished recognition by trimer-preferring antibodies. These results identify the sulfotyrosine-mediated V2-V3 interaction as a critical constraint that stabilizes the native HIV-1 envelope trimer and modulates its sensitivity to neutralization.
Cimbro2014
-
CH01: Four V2 MAbs CH58, CH59, HG107 and HG120 were isolated from RV144 Thai HIV-1 vaccinees. These MAbs recognized residue 169, neutralized laboratory HIV-1 (tier 1 strains) and mediated ADCC. CH01 was used in the study as a V1-V2 bnAb control to study the binding of the new mAb isolates. While PG9, PG16 and CH01 binding was abrogated by N160K and N156Q mutations and also by native glycosylation, the binding of CH58 and CH59 was not affected.
Liao2013b
(antibody binding site)
-
CH01: "Neutralization fingerprints" for 30 neutralizing antibodies were determined using a panel of 34 diverse HIV-1 strains. 10 antibody clusters were defined: VRC01-like, PG9-like, PGT128-like, 2F5-like, 10E8-like and separate clusters for b12, CD4, 2G12, HJ16, 8ANC195. This mAb belongs to PG9-like cluster.
Georgiev2013
(neutralization)
-
CH01: Identification of broadly neutralizing antibodies, their epitopes on the HIV-1 spike, the molecular basis for their remarkable breadth, and the B cell ontogenies of their generation and maturation are reviewed. Ontogeny and structure-based classification is presented, based on MAb binding site, type (structural mode of recognition), class (related ontogenies in separate donors) and family (clonal lineage). This MAb's classification: gp120 V1V2 site, penetrating CDR H3 binds two glycans and strand, PG9 class, CH01 family.
Kwong2012
(review, structure, broad neutralizer)
-
CH01: This review discusses how analysis of infection and vaccine candidate-induced antibodies and their genes may guide vaccine design. This MAb is listed as V1/V2 conformational epitope bnAb, isolated after 2009 by neutralization screening of cultured, unselected IgG+ memory B cells.
Bonsignori2012b
(vaccine antigen design, vaccine-induced immune responses, review)
-
CH01: PG9 and PG9-like V1V2-directed MAbs, that require an N-linked glycan at Env 160, were analyzed for gain-of-function mutations. 21 PG9-resistant HIV-1 isolates were analyzed by mutagenesis and neutralization assays. E to K mutations at positions 168, 169, 171 led to the most dramatic improvements on sensitivity to these MAbs (PG9, PG16, CH01, CH04, PGT141, PGT145).
Doria-RoseNA2012
(escape)
-
CH01: Vaccination efficacy of RV144 is described. The authors proposed that RV144 induced antibodies against Env V1/V2. The relationship between vaccine status and V1/V2 sequence have been characterized. The estimated cumulative HIV-1 incidence curve in the vaccine and placebo groups showed immunogenicity for K169 and 1181X genotypes and no immunogenicity for the opposite residues. CH01 was discussed as the quaternary-structure-preferring (QSP) antibody and mutations at positions 169 and 181 were associated with significant alteration in neutralization.
Rolland2012
(vaccine-induced immune responses)
-
CH01: The use of computationally derived B cell clonal lineages as templates for HIV-1 immunogen design is discussed. CH01 has been discussed in terms of immunogenic and functional characteristics of representative HIV-1 BnAbs and their reactions to antigens.
Haynes2012
(antibody interactions, memory cells, vaccine antigen design, review, antibody polyreactivity, broad neutralizer)
-
CH01: Antigenic properties of undigested VLPs and endo H-digested WT trimer VLPs were compared. Binding to E168K+ N189A WT VLPs was merely a trend of better antibody binding compared to the parent WT VLPs, uncleaved VLPs. There was no significant correlation between E168K+N189A WT VLP binding and CH01 neutralization.
Tong2012
(neutralization, binding affinity)
-
CH01: This is the first isolation of two clonal lineages of bnAbs with distinct specificities from memory B-cells of a single individual CH0219, whose plasma displays broad and potent neutralization. bnAbs CH01 and VRC-CH31 largely recapitulate the breadth of the donor’s serum neutralization and together achieve near pan-HIV-1 neutralization (95% of 91 strains neutralized by this donor's serum). This suggests that a vaccine capable of inducing bnAbs against both the CD4bs and the V1V2 conformational epitope could achieve broader HIV-1 neutralization than a vaccine inducing only one of the two specificities, and provides proof-of-concept supporting the design of polyvalent vaccines.
Bonsignori2012
(neutralization)
-
CH01: Clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer was identified. Common reverted unmutated ancestor (RUA) antibodies were inferred. CH01 neutralized 46% of 91 isolates from major clades, while the RUAs neutralized only 16% of HIV-1 isolates. The RUAa however retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. MAbs CH01 to CH04 recognized a PG9/PG16-like conformational epitope. Despite notable similarities, differences in breadths of neutralization and sensitivities to amino acids at positions 127, 159, 171, and 181 indicated either that MAbs CH01 to CH04 bind to a discretely different epitope or that they approach the same epitopes of PG9 and PG16 but in a different orientation. MAb CH03 was autoreactive for ribonucleoprotein, centromere B, and histone antigens, and MAbsCH01 to CH03 were polyreactive with the hepatitis C virus E2 protein and gut flora antigens, raising the possibility that MAbs CH01 to CH04 may be subjected to tolerance mechanisms.
Bonsignori2011
(antibody binding site, antibody generation, neutralization, antibody polyreactivity, broad neutralizer)
References
Showing 37 of
37 references.
Isolation Paper
Bonsignori2011
Mattia Bonsignori, Kwan-Ki Hwang, Xi Chen, Chun-Yen Tsao, Lynn Morris, Elin Gray, Dawn J. Marshall, John A. Crump, Saidi H. Kapiga, Noel E. Sam, Faruk Sinangil, Marie Pancera, Yang Yongping, Baoshan Zhang, Jiang Zhu, Peter D. Kwong, Sijy O'Dell, John R. Mascola, Lan Wu, Gary J. Nabel, Sanjay Phogat, Michael S. Seaman, John F. Whitesides, M. Anthony Moody, Garnett Kelsoe, Xinzhen Yang, Joseph Sodroski, George M. Shaw, David C. Montefiori, Thomas B. Kepler, Georgia D. Tomaras, S. Munir Alam, Hua-Xin Liao, and Barton F. Haynes. Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. J. Virol., 85(19):9998-10009, Oct 2011. PubMed ID: 21795340.
Show all entries for this paper.
Alam2013
S. Munir Alam, S. Moses Dennison, Baptiste Aussedat, Yusuf Vohra, Peter K. Park, Alberto Fernández-Tejada, Shelley Stewart, Frederick H. Jaeger, Kara Anasti, Julie H. Blinn, Thomas B. Kepler, Mattia Bonsignori, Hua-Xin Liao, Joseph G. Sodroski, Samuel J. Danishefsky, and Barton F. Haynes. Recognition of Synthetic Glycopeptides by HIV-1 Broadly Neutralizing Antibodies and Their Unmutated Ancestors. Proc. Natl. Acad. Sci. U.S.A., 110(45):18214-18219, 5 Nov 2013. PubMed ID: 24145434.
Show all entries for this paper.
Andrabi2015
Raiees Andrabi, James E. Voss, Chi-Hui Liang, Bryan Briney, Laura E. McCoy, Chung-Yi Wu, Chi-Huey Wong, Pascal Poignard, and Dennis R. Burton. Identification of Common Features in Prototype Broadly Neutralizing Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. Immunity, 43(5):959-973, 17 Nov 2015. PubMed ID: 26588781.
Show all entries for this paper.
Bonsignori2012
Mattia Bonsignori, David C. Montefiori, Xueling Wu, Xi Chen, Kwan-Ki Hwang, Chun-Yen Tsao, Daniel M. Kozink, Robert J. Parks, Georgia D. Tomaras, John A. Crump, Saidi H. Kapiga, Noel E. Sam, Peter D. Kwong, Thomas B. Kepler, Hua-Xin Liao, John R. Mascola, and Barton F. Haynes. Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design. J. Virol., 86(8):4688-4692, Apr 2012. PubMed ID: 22301150.
Show all entries for this paper.
Bonsignori2012b
Mattia Bonsignori, S. Munir Alam, Hua-Xin Liao, Laurent Verkoczy, Georgia D. Tomaras, Barton F. Haynes, and M. Anthony Moody. HIV-1 Antibodies from Infection and Vaccination: Insights for Guiding Vaccine Design. Trends Microbiol., 20(11):532-539, Nov 2012. PubMed ID: 22981828.
Show all entries for this paper.
Bricault2019
Christine A. Bricault, Karina Yusim, Michael S. Seaman, Hyejin Yoon, James Theiler, Elena E. Giorgi, Kshitij Wagh, Maxwell Theiler, Peter Hraber, Jennifer P. Macke, Edward F. Kreider, Gerald H. Learn, Beatrice H. Hahn, Johannes F. Scheid, James M. Kovacs, Jennifer L. Shields, Christy L. Lavine, Fadi Ghantous, Michael Rist, Madeleine G. Bayne, George H. Neubauer, Katherine McMahan, Hanqin Peng, Coraline Chéneau, Jennifer J. Jones, Jie Zeng, Christina Ochsenbauer, Joseph P. Nkolola, Kathryn E. Stephenson, Bing Chen, S. Gnanakaran, Mattia Bonsignori, LaTonya D. Williams, Barton F. Haynes, Nicole Doria-Rose, John R. Mascola, David C. Montefiori, Dan H. Barouch, and Bette Korber. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe, 25(1):59-72.e8, 9 Jan 2019. PubMed ID: 30629920.
Show all entries for this paper.
Cimbro2014
Raffaello Cimbro, Thomas R. Gallant, Michael A. Dolan, Christina Guzzo, Peng Zhang, Yin Lin, Huiyi Miao, Donald Van Ryk, James Arthos, Inna Gorshkova, Patrick H. Brown, Darrell E. Hurt, and Paolo Lusso. Tyrosine Sulfation in the Second Variable Loop (V2) of HIV-1 gp120 Stabilizes V2-V3 Interaction and Modulates Neutralization Sensitivity. Proc. Natl. Acad. Sci. U.S.A., 111(8):3152-3157, 25 Feb 2014. PubMed ID: 24569807.
Show all entries for this paper.
Crooks2018
Ema T. Crooks, Samantha L. Grimley, Michelle Cully, Keiko Osawa, Gillian Dekkers, Kevin Saunders, Sebastian Ramisch, Sergey Menis, William R. Schief, Nicole Doria-Rose, Barton Haynes, Ben Murrell, Evan Mitchel Cale, Amarendra Pegu, John R. Mascola, Gestur Vidarsson, and James M. Binley. Glycoengineering HIV-1 Env Creates `Supercharged' and `Hybrid' Glycans to Increase Neutralizing Antibody Potency, Breadth and Saturation. PLoS Pathog., 14(5):e1007024, May 2018. PubMed ID: 29718999.
Show all entries for this paper.
Decamp2014
Allan deCamp, Peter Hraber, Robert T. Bailer, Michael S. Seaman, Christina Ochsenbauer, John Kappes, Raphael Gottardo, Paul Edlefsen, Steve Self, Haili Tang, Kelli Greene, Hongmei Gao, Xiaoju Daniell, Marcella Sarzotti-Kelsoe, Miroslaw K. Gorny, Susan Zolla-Pazner, Celia C. LaBranche, John R. Mascola, Bette T. Korber, and David C. Montefiori. Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J. Virol., 88(5):2489-2507, Mar 2014. PubMed ID: 24352443.
Show all entries for this paper.
deTaeye2019
Steven W. de Taeye, Eden P. Go, Kwinten Sliepen, Alba Torrents de la Peña, Kimberly Badal, Max Medina-Ramírez, Wen-Hsin Lee, Heather Desaire, Ian A. Wilson, John P. Moore, Andrew B. Ward, and Rogier W. Sanders. Stabilization of the V2 Loop Improves the Presentation of V2 Loop-Associated Broadly Neutralizing Antibody Epitopes on HIV-1 Envelope Trimers. J. Biol. Chem., 294(14):5616-5631, 5 Apr 2019. PubMed ID: 30728245.
Show all entries for this paper.
Doria-Rose2017
Nicole A. Doria-Rose, Han R. Altae-Tran, Ryan S. Roark, Stephen D. Schmidt, Matthew S. Sutton, Mark K. Louder, Gwo-Yu Chuang, Robert T. Bailer, Valerie Cortez, Rui Kong, Krisha McKee, Sijy O'Dell, Felicia Wang, Salim S. Abdool Karim, James M. Binley, Mark Connors, Barton F. Haynes, Malcolm A. Martin, David C. Montefiori, Lynn Morris, Julie Overbaugh, Peter D. Kwong, John R. Mascola, and Ivelin S. Georgiev. Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathog., 13(1):e1006148, Jan 2017. PubMed ID: 28052137.
Show all entries for this paper.
Doria-RoseNA2012
Nicole A. Doria-Rose, Ivelin Georgiev, Sijy O'Dell, Gwo-Yu Chuang, Ryan P. Staupe, Jason S. McLellan, Jason Gorman, Marie Pancera, Mattia Bonsignori, Barton F. Haynes, Dennis R. Burton, Wayne C. Koff, Peter D. Kwong, and John R. Mascola. A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies. J. Virol., Aug 2012. PubMed ID: 22623764.
Show all entries for this paper.
Georgiev2013
Ivelin S. Georgiev, Nicole A. Doria-Rose, Tongqing Zhou, Young Do Kwon, Ryan P. Staupe, Stephanie Moquin, Gwo-Yu Chuang, Mark K. Louder, Stephen D. Schmidt, Han R. Altae-Tran, Robert T. Bailer, Krisha McKee, Martha Nason, Sijy O'Dell, Gilad Ofek, Marie Pancera, Sanjay Srivatsan, Lawrence Shapiro, Mark Connors, Stephen A. Migueles, Lynn Morris, Yoshiaki Nishimura, Malcolm A. Martin, John R. Mascola, and Peter D. Kwong. Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 340(6133):751-756, 10 May 2013. PubMed ID: 23661761.
Show all entries for this paper.
Gorman2016
Jason Gorman, Cinque Soto, Max M. Yang, Thaddeus M. Davenport, Miklos Guttman, Robert T. Bailer, Michael Chambers, Gwo-Yu Chuang, Brandon J. DeKosky, Nicole A. Doria-Rose, Aliaksandr Druz, Michael J. Ernandes, Ivelin S. Georgiev, Marissa C. Jarosinski, M. Gordon Joyce, Thomas M. Lemmin, Sherman Leung, Mark K. Louder, Jonathan R. McDaniel, Sandeep Narpala, Marie Pancera, Jonathan Stuckey, Xueling Wu, Yongping Yang, Baoshan Zhang, Tongqing Zhou, NISC Comparative Sequencing Program, James C. Mullikin, Ulrich Baxa, George Georgiou, Adrian B. McDermott, Mattia Bonsignori, Barton F. Haynes, Penny L. Moore, Lynn Morris, Kelly K. Lee, Lawrence Shapiro, John R. Mascola, and Peter D. Kwong. Structures of HIV-1 Env V1V2 with Broadly Neutralizing Antibodies Reveal Commonalities That Enable Vaccine Design. Nat. Struct. Mol. Biol., 23(1):81-90, Jan 2016. PubMed ID: 26689967.
Show all entries for this paper.
Haynes2012
Barton F. Haynes, Garnett Kelsoe, Stephen C. Harrison, and Thomas B. Kepler. B-Cell-Lineage Immunogen Design in Vaccine Development with HIV-1 as a Case Study. Nat. Biotechnol., 30(5):423-433, May 2012. PubMed ID: 22565972.
Show all entries for this paper.
Haynes2013
Barton F. Haynes and M. Juliana McElrath. Progress in HIV-1 Vaccine Development. Curr. Opin. HIV AIDS, 8(4):326-332, Jul 2013. PubMed ID: 23743722.
Show all entries for this paper.
Henderson2019
Rory Henderson, Brian E. Watts, Hieu N. Ergin, Kara Anasti, Robert Parks, Shi-Mao Xia, Ashley Trama, Hua-Xin Liao, Kevin O. Saunders, Mattia Bonsignori, Kevin Wiehe, Barton F. Haynes, and S. Munir Alam. Selection of Immunoglobulin Elbow Region Mutations Impacts Interdomain Conformational Flexibility in HIV-1 Broadly Neutralizing Antibodies. Nat. Commun., 10(1):654, 8 Feb 2019. PubMed ID: 30737386.
Show all entries for this paper.
Hraber2014
Peter Hraber, Michael S. Seaman, Robert T. Bailer, John R. Mascola, David C. Montefiori, and Bette T. Korber. Prevalence of Broadly Neutralizing Antibody Responses during Chronic HIV-1 Infection. AIDS, 28(2):163-169, 14 Jan 2014. PubMed ID: 24361678.
Show all entries for this paper.
Kwong2012
Peter D. Kwong and John R. Mascola. Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity, 37(3):412-425, 21 Sep 2012. PubMed ID: 22999947.
Show all entries for this paper.
Kwong2018
Peter D. Kwong and John R. Mascola. HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity, 48(5):855-871, 15 May 2018. PubMed ID: 29768174.
Show all entries for this paper.
Lee2017
Jeong Hyun Lee, Raiees Andrabi, Ching-Yao Su, Anila Yasmeen, Jean-Philippe Julien, Leopold Kong, Nicholas C. Wu, Ryan McBride, Devin Sok, Matthias Pauthner, Christopher A. Cottrell, Travis Nieusma, Claudia Blattner, James C. Paulson, Per Johan Klasse, Ian A. Wilson, Dennis R. Burton, and Andrew B. Ward. A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic beta-Hairpin Structure. Immunity, 46(4):690-702, 18 Apr 2017. PubMed ID: 28423342.
Show all entries for this paper.
Liao2013b
Hua-Xin Liao, Mattia Bonsignori, S. Munir Alam, Jason S. McLellan, Georgia D. Tomaras, M. Anthony Moody, Daniel M. Kozink, Kwan-Ki Hwang, Xi Chen, Chun-Yen Tsao, Pinghuang Liu, Xiaozhi Lu, Robert J. Parks, David C. Montefiori, Guido Ferrari, Justin Pollara, Mangala Rao, Kristina K. Peachman, Sampa Santra, Norman L. Letvin, Nicos Karasavvas, Zhi-Yong Yang, Kaifan Dai, Marie Pancera, Jason Gorman, Kevin Wiehe, Nathan I. Nicely, Supachai Rerks-Ngarm, Sorachai Nitayaphan, Jaranit Kaewkungwal, Punnee Pitisuttithum, James Tartaglia, Faruk Sinangil, Jerome H. Kim, Nelson L. Michael, Thomas B. Kepler, Peter D. Kwong, John R. Mascola, Gary J. Nabel, Abraham Pinter, Susan Zolla-Pazner, and Barton F. Haynes. Vaccine Induction of Antibodies Against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 38(1):176-186, 24 Jan 2013. PubMed ID: 23313589.
Show all entries for this paper.
Liu2014
Pinghuang Liu, Latonya D. Williams, Xiaoying Shen, Mattia Bonsignori, Nathan A. Vandergrift, R. Glenn Overman, M. Anthony Moody, Hua-Xin Liao, Daniel J. Stieh, Kerrie L. McCotter, Audrey L. French, Thomas J. Hope, Robin Shattock, Barton F. Haynes, and Georgia D. Tomaras. Capacity for Infectious HIV-1 Virion Capture Differs by Envelope Antibody Specificity. J. Virol., 88(9):5165-5170, May 2014. PubMed ID: 24554654.
Show all entries for this paper.
Liu2015a
Mengfei Liu, Guang Yang, Kevin Wiehe, Nathan I. Nicely, Nathan A. Vandergrift, Wes Rountree, Mattia Bonsignori, S. Munir Alam, Jingyun Gao, Barton F. Haynes, and Garnett Kelsoe. Polyreactivity and Autoreactivity among HIV-1 Antibodies. J. Virol., 89(1):784-798, Jan 2015. PubMed ID: 25355869.
Show all entries for this paper.
Nie2020
Jianhui Nie, Weijin Huang, Qiang Liu, and Youchun Wang. HIV-1 pseudoviruses constructed in China regulatory laboratory. Emerg Microbes Infect, 9(1):32-41 doi, 2020. PubMed ID: 31859609
Show all entries for this paper.
Rolland2012
Morgane Rolland, Paul T. Edlefsen, Brendan B. Larsen, Sodsai Tovanabutra, Eric Sanders-Buell, Tomer Hertz, Allan C. deCamp, Chris Carrico, Sergey Menis, Craig A. Magaret, Hasan Ahmed, Michal Juraska, Lennie Chen, Philip Konopa, Snehal Nariya, Julia N. Stoddard, Kim Wong, Hong Zhao, Wenjie Deng, Brandon S. Maust, Meera Bose, Shana Howell, Adam Bates, Michelle Lazzaro, Annemarie O'Sullivan, Esther Lei, Andrea Bradfield, Grace Ibitamuno, Vatcharain Assawadarachai, Robert J. O'Connell, Mark S. deSouza, Sorachai Nitayaphan, Supachai Rerks-Ngarm, Merlin L. Robb, Jason S. McLellan, Ivelin Georgiev, Peter D. Kwong, Jonathan M. Carlson, Nelson L. Michael, William R. Schief, Peter B. Gilbert, James I. Mullins, and Jerome H. Kim. Increased HIV-1 Vaccine Efficacy against Viruses with Genetic Signatures in Env V2. Nature, 490(7420):417-420, 18 Oct 2012. PubMed ID: 22960785.
Show all entries for this paper.
Sanders2013
Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931.
Show all entries for this paper.
Schiffner2016
Torben Schiffner, Natalia de Val, Rebecca A. Russell, Steven W. de Taeye, Alba Torrents de la Peña, Gabriel Ozorowski, Helen J. Kim, Travis Nieusma, Florian Brod, Albert Cupo, Rogier W. Sanders, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J. Virol., 90(2):813-828, 28 Oct 2015. PubMed ID: 26512083.
Show all entries for this paper.
Schiffner2018
Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590.
Show all entries for this paper.
Sliepen2015
Kwinten Sliepen, Max Medina-Ramirez, Anila Yasmeen, John P. Moore, Per Johan Klasse, and Rogier W. Sanders. Binding of Inferred Germline Precursors of Broadly Neutralizing HIV-1 Antibodies to Native-Like Envelope Trimers. Virology, 486:116-120, Dec 2015. PubMed ID: 26433050.
Show all entries for this paper.
Tong2012
Tommy Tong, Ema T. Crooks, Keiko Osawa, and James M. Binley. HIV-1 Virus-Like Particles Bearing Pure Env Trimers Expose Neutralizing Epitopes but Occlude Nonneutralizing Epitopes. J. Virol., 86(7):3574-3587, Apr 2012. PubMed ID: 22301141.
Show all entries for this paper.
Voss2017
James E. Voss, Raiees Andrabi, Laura E. McCoy, Natalia de Val, Roberta P. Fuller, Terrence Messmer, Ching-Yao Su, Devin Sok, Salar N. Khan, Fernando Garces, Laura K. Pritchard, Richard T. Wyatt, Andrew B. Ward, Max Crispin, Ian A. Wilson, and Dennis R. Burton. Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Rep., 21(1):222-235, 3 Oct 2017. PubMed ID: 28978475.
Show all entries for this paper.
Walker2018
Laura M. Walker and Dennis R. Burton. Passive Immunotherapy of Viral Infections: `Super-Antibodies' Enter the Fray. Nat. Rev. Immunol., 18(5):297-308, May 2018. PubMed ID: 29379211.
Show all entries for this paper.
Webb2015
Nicholas E. Webb, David C. Montefiori, and Benhur Lee. Dose-Response Curve Slope Helps Predict Therapeutic Potency and Breadth of HIV Broadly Neutralizing Antibodies. Nat. Commun., 6:8443, 29 Sep 2015. PubMed ID: 26416571.
Show all entries for this paper.
Wibmer2013
Constantinos Kurt Wibmer, Jinal N. Bhiman, Elin S Gray, Nancy Tumba, Salim S. Abdool Karim, Carolyn Williamson, Lynn Morris, and Penny L. Moore. Viral Escape from HIV-1 Neutralizing Antibodies Drives Increased Plasma Neutralization Breadth through Sequential Recognition of Multiple Epitopes and Immunotypes. PLoS Pathog, 9(10):e1003738, Oct 2013. PubMed ID: 24204277.
Show all entries for this paper.
Wu2016
Xueling Wu and Xiang-Peng Kong. Antigenic Landscape of the HIV-1 Envelope and New Immunological Concepts Defined by HIV-1 Broadly Neutralizing Antibodies. Curr. Opin. Immunol., 42:56-64, Oct 2016. PubMed ID: 27289425.
Show all entries for this paper.
Yates2018
Nicole L. Yates, Allan C. deCamp, Bette T. Korber, Hua-Xin Liao, Carmela Irene, Abraham Pinter, James Peacock, Linda J. Harris, Sheetal Sawant, Peter Hraber, Xiaoying Shen, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayapan, Phillip W. Berman, Merlin L. Robb, Giuseppe Pantaleo, Susan Zolla-Pazner, Barton F. Haynes, S. Munir Alam, David C. Montefiori, and Georgia D. Tomaras. HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J. Virol., 92(8), 15 Apr 2018. PubMed ID: 29386288.
Show all entries for this paper.