Found 1 matching record:
Displaying record number 2579
Download this epitope
record as JSON.
MAb ID |
3BNC55 |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
|
Epitope |
|
Ab Type |
gp120 CD4BS |
Neutralizing |
P View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human(IgG) |
Patient |
Patient 3 |
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody generation, antibody lineage, antibody sequence, autologous responses, binding affinity, broad neutralizer, computational epitope prediction, elite controllers, escape, glycosylation, neutralization, polyclonal antibodies, review, structure, vaccine antigen design, vaccine-induced immune responses |
Notes
Showing 9 of
9 notes.
-
3BNC55: This study demonstrated that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens eliciting Ab responses with greater neutralization breadth. Data from four large virus panels were used to comprehensively map viral signatures associated with bNAb sensitivity, hypervariable region characteristics, and clade effects. The bNAb signatures defined for the V2 epitope region were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine which resulted in increased breadth of NAb responses compared with Env 459C alone. 3BNC55 was used for analyzing clade sensitivity and the signature summaries.
Bricault2019
(antibody binding site, vaccine antigen design, computational epitope prediction, broad neutralizer)
-
3BNC55: Neutralizing antibody response was studied in elite controller. Subject VC10042 is an African American male, infected with clade B for 2 decades (since 1984) without any signs of disease and no antiretroviral treatment. The neutralizing activity of autologous CD4bs NAbs was very similar to that of NIH45-46W, but very different from other anti-CD4bs MAbs tested. The viral autologous variants that were resistant to neutralization by autologous and most bnMAbs tested had an extremely rare R272/N368 combination. This mutation was shown in the study to impart a fitness cost to the virus.
Sather2012
(autologous responses, elite controllers, neutralization, escape, polyclonal antibodies)
-
3BNC55: A computational tool (Antibody Database) identifying Env residues affecting antibody activity was developed. As input, the tool incorporates antibody neutralization data from large published pseudovirus panels, corresponding viral sequence data and available structural information. The model consists of a set of rules that provide an estimated IC50 based on Env sequence data, and important residues are found by minimizing the difference between logarithms of actual and estimated IC50. The program was validated by analysis of MAb 8ANC195, which had unknown specificity. Predicted critical N-glycosylation for 8ANC195 were confirmed in vitro and in humanized mice. The key associated residues for each MAb are summarized in the Table 1 of the paper and also in the Neutralizing Antibody Contexts & Features tool at Los Alamos Immunology Database.
West2013
(glycosylation, computational epitope prediction)
-
3BNC55: This review discusses how analysis of infection and vaccine candidate-induced antibodies and their genes may guide vaccine design. This MAb is listed as CD4 binding site bnAb, isolated after 2009 by fluorescence-activated cell sorting (FACS) and 454 deep sequencing.
Bonsignori2012b
(vaccine antigen design, vaccine-induced immune responses, review)
-
3BNC55: Somatic hypermutations are preferably found in CDR loops, which alter the Ab combining sites, but not the overall structure of the variable domain. FWR of CDR are usually resistant to and less tolerant of mutations. This study reports that most bnAbs require somatic mutations in the FWRs which provide flexibility, increasing Ab breadth and potency. To determine the consequence of FWR mutations the framework residues were reverted to the Ab's germline counterpart (FWR-GL) and binding and neutralizing properties were then evaluated. Insertion of FWR in 3BNC55 increased its neutralizing potency (described in Fig 5C).
Klein2013
(neutralization, structure, antibody lineage)
-
3BNC55: Existing structural and sequence data was analyzed. A set of signature features for potent VRC01-like (PVL) and almost PVL abs was proposed and verified by mutagenesis. 3BNC55 has been referred as an almost PVL in discussing the breadth and potency of antiCD4 abs.
West2012a
(antibody lineage)
-
3BNC55: A single-cell Ab cloning method is described to isolate neutralizing Abs using truncated gp160 transfected cells as bait. Among the 15 Abs reported, only two are found to be broadly neutralizing and bind to a novel conformational HIV-1 spike epitope.
Klein2012
(neutralization)
-
3BNC55: Several antibodies including 10-1074 were isolated from B-cell clone encoding PGT121, from a clade A-infected African donor using YU-2 gp140 trimers as bait. These antibodies were segregated into PGT121-like (PGT121-123 and 9 members) and 10-1074-like (20 members) groups distinguished by sequence, binding affinity, carbohydrate recognition, neutralizing activity, the V3 loop binding and the role of glycans in epitope formation. 3BNC55 was used as a control in virus neutralization assay. Detail information on the binding and neutralization assays are described in the figures S2-S11.
Mouquet2012a
(glycosylation, neutralization, binding affinity)
-
3BNC55: 576 new HIV antibodies were cloned from 4 unrelated individuals producing expanded clones of potent broadly neutralizing CD4bs antibodies that bind to 2CC core. In order to amplify highly somatically mutated immunoglobulin genes, new primer set with 5' primer set further upstream from the potentially mutated region was used. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 IgH chain amino acids and arose independently from two related IgH genes. 3BNC55, belonging to a clone with 85 members, arises from IgVH1-2 and IgVK1D-33 germline genes and neutralized 81% of 118 isolates representing major HIV-1 clades, with IC50<50μg/ml.
Scheid2011
(antibody generation, neutralization, antibody sequence, broad neutralizer)
References
Showing 9 of
9 references.
Isolation Paper
Scheid2011
Johannes F. Scheid, Hugo Mouquet, Beatrix Ueberheide, Ron Diskin, Florian Klein, Thiago Y. K. Oliveira, John Pietzsch, David Fenyo, Alexander Abadir, Klara Velinzon, Arlene Hurley, Sunnie Myung, Farid Boulad, Pascal Poignard, Dennis R. Burton, Florencia Pereyra, David D. Ho, Bruce D. Walker, Michael S. Seaman, Pamela J. Bjorkman, Brian T. Chait, and Michel C. Nussenzweig. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science, 333(6049):1633-1637, 16 Sep 2011. PubMed ID: 21764753.
Show all entries for this paper.
Klein2012
Florian Klein, Christian Gaebler, Hugo Mouquet, D. Noah Sather, Clara Lehmann, Johannes F. Scheid, Zane Kraft, Yan Liu, John Pietzsch, Arlene Hurley, Pascal Poignard, Ten Feizi, Lynn Morris, Bruce D. Walker, Gerd Fätkenheuer, Michael S. Seaman, Leonidas Stamatatos, and Michel C. Nussenzweig. Broad Neutralization by a Combination of Antibodies Recognizing the CD4 Binding Site and a New Conformational Epitope on the HIV-1 Envelope Protein. J. Exp. Med., 209(8):1469-1479, 30 Jul 2012. PubMed ID: 22826297.
Show all entries for this paper.
Mouquet2012a
Hugo Mouquet, Louise Scharf, Zelda Euler, Yan Liu, Caroline Eden, Johannes F. Scheid, Ariel Halper-Stromberg, Priyanthi N. P. Gnanapragasam, Daniel I. R. Spencer, Michael S. Seaman, Hanneke Schuitemaker, Ten Feizi, Michel C. Nussenzweig, and Pamela J. Bjorkman. Complex-Type N-Glycan Recognition by Potent Broadly Neutralizing HIV Antibodies. Proc. Natl. Acad. Sci. U.S.A, 109(47):E3268-E3277, 20 Nov 2012. PubMed ID: 23115339.
Show all entries for this paper.
West2012a
Anthony P. West, Jr., Ron Diskin, Michel C. Nussenzweig, and Pamela J. Bjorkman. Structural Basis for Germ-Line Gene Usage of a Potent Class of Antibodies Targeting the CD4-Binding Site of HIV-1 gp120. Proc. Natl. Acad. Sci. U.S.A., 109(30):E2083-E2090, 24 Jul 2012. PubMed ID: 22745174.
Show all entries for this paper.
Klein2013
Florian Klein, Ron Diskin, Johannes F. Scheid, Christian Gaebler, Hugo Mouquet, Ivelin S. Georgiev, Marie Pancera, Tongqing Zhou, Reha-Baris Incesu, Brooks Zhongzheng Fu, Priyanthi N. P. Gnanapragasam, Thiago Y. Oliveira, Michael S. Seaman, Peter D. Kwong, Pamela J. Bjorkman, and Michel C. Nussenzweig. Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 153(1):126-138, 28 Mar 2013. PubMed ID: 23540694.
Show all entries for this paper.
Bonsignori2012b
Mattia Bonsignori, S. Munir Alam, Hua-Xin Liao, Laurent Verkoczy, Georgia D. Tomaras, Barton F. Haynes, and M. Anthony Moody. HIV-1 Antibodies from Infection and Vaccination: Insights for Guiding Vaccine Design. Trends Microbiol., 20(11):532-539, Nov 2012. PubMed ID: 22981828.
Show all entries for this paper.
West2013
Anthony P. West, Jr., Louise Scharf, Joshua Horwitz, Florian Klein, Michel C. Nussenzweig, and Pamela J. Bjorkman. Computational Analysis of Anti-HIV-1 Antibody Neutralization Panel Data to Identify Potential Functional Epitope Residues. Proc. Natl. Acad. Sci. U.S.A., 110(26):10598-10603, 25 Jun 2013. PubMed ID: 23754383.
Show all entries for this paper.
Sather2012
D. Noah Sather, Sara Carbonetti, Jenny Kehayia, Zane Kraft, Iliyana Mikell, Johannes F. Scheid, Florian Klein, and Leonidas Stamatatos. Broadly Neutralizing Antibodies Developed by an HIV-Positive Elite Neutralizer Exact a Replication Fitness Cost on the Contemporaneous Virus. J. Virol., 86(23):12676-12685, Dec 2012. PubMed ID: 22973035.
Show all entries for this paper.
Bricault2019
Christine A. Bricault, Karina Yusim, Michael S. Seaman, Hyejin Yoon, James Theiler, Elena E. Giorgi, Kshitij Wagh, Maxwell Theiler, Peter Hraber, Jennifer P. Macke, Edward F. Kreider, Gerald H. Learn, Beatrice H. Hahn, Johannes F. Scheid, James M. Kovacs, Jennifer L. Shields, Christy L. Lavine, Fadi Ghantous, Michael Rist, Madeleine G. Bayne, George H. Neubauer, Katherine McMahan, Hanqin Peng, Coraline Chéneau, Jennifer J. Jones, Jie Zeng, Christina Ochsenbauer, Joseph P. Nkolola, Kathryn E. Stephenson, Bing Chen, S. Gnanakaran, Mattia Bonsignori, LaTonya D. Williams, Barton F. Haynes, Nicole Doria-Rose, John R. Mascola, David C. Montefiori, Dan H. Barouch, and Bette Korber. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe, 25(1):59-72.e8, 9 Jan 2019. PubMed ID: 30629920.
Show all entries for this paper.