Found 1 matching record:
Displaying record number 2571
Download this epitope
record as JSON.
MAb ID |
VRC-PG04 (PG04,PGV04,VRC-PG04d74,PG-04,VRC-PG-04) |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
Env |
Epitope |
|
Subtype |
AD |
Ab Type |
gp120 CD4BS |
Neutralizing |
P View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human(IgG) |
Patient |
Donor 74 |
Immunogen |
HIV-1 infection |
Keywords |
ADCC, antibody binding site, antibody generation, antibody interactions, antibody lineage, antibody sequence, assay or method development, binding affinity, broad neutralizer, computational epitope prediction, glycosylation, HIV-2, neutralization, review, structure, vaccine antigen design, vaccine-induced immune responses |
Notes
Showing 42 of
42 notes.
-
VRC-PG04: This paper presents the derivation of VRC-PG05, with details as previously noted in a patent application (Mascola2012). VRC-PG04 and VRC-PG05 were derived from the same patient sample, but are not clonally related and have different binding types. PG05 neutralized 27% of a 208-virus multiclade panel. The crystal structure and NMR of PG05 revealed that it recognizes the silent face of gp120, a region that is shielded by glycans and has had no previously reported antibody recognition.
Zhou2018
(antibody binding site, structure)
-
VRC-PG04: This study demonstrated that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens eliciting Ab responses with greater neutralization breadth. Data from four large virus panels were used to comprehensively map viral signatures associated with bNAb sensitivity, hypervariable region characteristics, and clade effects. The bNAb signatures defined for the V2 epitope region were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine which resulted in increased breadth of NAb responses compared with Env 459C alone. PG04 was used for analyzing clade sensitivity and the CD4b signature summaries.
Bricault2019
(antibody binding site, vaccine antigen design, computational epitope prediction, broad neutralizer)
-
VRC-PG04: This review discusses the identification of super-Abs, where and how such Abs may be best applied and future directions for the field. VRC-PG04 was isolated from human B cell clones and is functionally similar to VRC01. Antigenic region CD4 binding site (Table:1).
Walker2018
(antibody binding site, review, broad neutralizer)
-
PGV04: The first cryo-EM structure of a cross-linked vaccine antigen was solved. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a bNAb PGV04 Fab fragment revealed how cross-linking affects key properties of the trimer. It was observed that density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. SOSIP and GLA-SOSIP trimers were compared for antigenicity by ELISA, using a large panel of mAbs previously determined to react with BG505 Env. Non-NAbs globally lost reactivity (7-fold median loss of binding), likely because of covalent stabilization of the cross-linked ‘closed’ form of the GLA-SOSIP trimer that binds non-NAbs weakly or not at all. V3-specific non-NAbs showed 2.1–3.3-fold reduced binding. Three autologous rabbit monoclonal NAbs to the N241/N289 ‘glycan-hole’ surface, showed a median ˜1.5-fold reduction in binding. V3 non-NAb 4025 showed residual binding to the GLA-SOSIP trimer. By contrast, bNAbs like PGV04 broadly retained reactivity significantly better than non-NAbs, with exception of PGT145 (3.3-5.3 fold loss of binding in ELISA and SPR).
Schiffner2018
(vaccine antigen design, binding affinity, structure)
-
VRC-PG04: In the RV305 HIV-1 vaccine trial, two boosts of either ALVAC-HIV, AIDSVAX B/E gp120 or ALVAC-HIV + AIDSVAX B/E gp120 were given to HIV-1-uninfected RV144 vaccine-recipients. While no bNAb plasma activity was induced in this trial as well, an increased frequency of memory B cells that produce Env-specific anti-CD4bs antibodies with long HCDR3s was detected. In a binding assay, PGV04 binding was reduced by mutants of subtype B Env protein YU2.
Easterhoff2017
(binding affinity)
-
PGV04: Libraries of BG505 gp120 containing mutations were displayed on yeast and screened for binding to a panel of VRC01-class mAbs. Boosted VRC01 gH mice showed broad neutralization on a panel of N276A viruses, neutralization of fully native virus containing the N276 glycan site was limited to a single heterologous tier 2 isolate and was substantially less potent. The progress of vaccine-induced somatic hyper mutation, SHM, toward mature VRC01 was tested. For each VH1-2 sequence, the total number of amino-acid mutations and the number of amino-acid mutations shared with a panel of VRC01-class mAbs like VRC01, PGV04, PGV20, VRC-CH31, 3BNC60, and 12A12 were determined. Extremely deep Ab repertoire sequencing on two healthy HIV-naive individuals were performed to compute the frequency of randomly incorporated VRC01-class mutations in human VH1-2 Ab sequence.
Briney2016
(HIV-2, neutralization, vaccine antigen design)
-
VRC-PG04: This study describes a computational method to calculate the binding affinities of antibodies and antigens. The method called free-energy perturbation (FEP) was developed using HIV-1 Env gp120 and 3 VRC01-class mAbs, VRC01, VRC03, and VRC-PG04.
Clark2017
(binding affinity, structure)
-
PG04: The next generation of a computational neutralization fingerprinting (NFP) being used as a way to predict polyclonal Ab responses to HIV infection is presented. A new panel of 20 pseudoviruses, termed f61, was developed to aid in the assessment of experimental neutralization. This panel was used to assess 22 well-characterized bNAbs and mixtures thereof (HJ16, VRC01, 8ANC195, IGg1b12, PGT121, PGT128, PGT135, PG9, PGT151, 35O22, 10E8, 2F5, 4E10, VRC27, VRC-CH31, VRC-PG20, PG04, VRC23, 12A12, 3BNC117, PGT145, CH01). The new algorithms accurately predicted VRC01-like and PG9-like antibody specificities.
Doria-Rose2017
(neutralization, computational epitope prediction)
-
PGV04: This study performed cyclical permutation of the V1 loop of JRFL in order to develop better gp120 trimers to elicit neutralizing antibodies. Some mutated trimers showed improved binding to several mAbs, including VRC01, VRC03, VRC-PG04, PGT128, PGT145, PGDM1400, b6, and F105. Guinea pigs immunized with prospective trimers showed improved neutralization of a panel of HIV-1 pseudoviruses.
Kesavardhana2017
(vaccine antigen design, vaccine-induced immune responses)
-
VRC-PG04: Somatic hypermutation and affinity maturation improve an antibody's complementarity with its target epitope. Mass spectroscopy and X-ray structures were used to examine two classes of mAbs, CD4 binding Abs (VRC03, VRC-PG04) and V2 binding Abs (VRC26.01, VRC26.03, VRC26.10, PG16, CH03), to determine how specific mutations that occurred during maturation affected the binding of the mAbs to their target epitope.
Davenport2016
(structure, antibody lineage)
-
VRC-PG04: This review classified and mapped the binding regions of 32 bNAbs isolated 2010-2016.
Wu2016
(review)
-
VRC-PG04: This study produced Env SOSIP trimers for clades A (strain BG505), B (strain JR-FL), and G (strain X1193). Based on simulations, the MAb-trimer structures of all MAbs tested needed to accommodate at least one glycan, including both antibodies known to require specific glycans (PG9, PGT121, PGT135, 8ANC195, 35O22) and those that bind the CD4-binding site (b12, CH103, HJ16, VRC01, VRC13). A subset of monoclonal antibodies bound to glycan arrays assayed on glass slides (VRC26.09, PGT121, 2G12, PGT128, VRC13, PGT151, 35O22), while most of the antibodies did not have affinity for oligosaccharide in the context of a glycan array (PG9, PGT145, PGDM1400, PGT135, b12, CH103, HJ16, VRC16, VRC01, VRC-PG04, VRC-CH31, VRC-PG20, 3BNC60, 12A12, VRC18b, VRC23, VRC27, 1B2530, 8ANC131, 8ANC134, 8ANC195).
Stewart-Jones2016
(antibody binding site, glycosylation, structure)
-
VRC-PG04: This study assessed the ADCC activity of antibodies of varied binding types, including CD4bs (b6, b12, VRC01, PGV04, 3BNC117), V2 (PG9, PG16), V3 (PGT126, PGT121, 10-1074), oligomannose (2G12), MPER (2F5, 4E10, 10E8), CD4i (17b, X5), C1/C5 (A32, C11), cluster I (240D, F240), and cluster II (98-6, 126-7). ADCC activity was correlated with binding to Env on the surfaces of virus-infected cells. ADCC was correlated with neutralization, but not always for lab-adapted viruses such as HIV-1 NLA-3. MAb PG04 had moderate to strong ADCC activity against cells infected with 3 of 3 strains tested.
vonBredow2016
(ADCC)
-
PGV04: HIV-1 bNAb eptiope networks were predicted using 4 algorithms informed by neutralization assays using 282 Env from multiclade viruses. Patch clusters of possible Ab epitope regions were tested for significant sensitivity by site-directed mutagenesis. Epitope (Ab binding site) networks of critical Env residues for 21 bNAb (b12, PG9, PG16, PGT121, PGT122, PGT123, PGT125, PGT126, PGT127, PGT128, PGT130, PGT131, PGT135, PGT136, PGT137, PGT141, PGT142, PGT143, PGT144, PGT145 and PGV04) were delineated and found to be located mostly in variable loops of gp120, particularly in V1/V2.
Evans2014
(antibody binding site, computational epitope prediction)
-
PGV04: Two stable homogenous gp140 Env trimer spikes, Clade A 92UG037.8 Env and Clade C C97ZA012 Env, were identified. 293T cells stably transfected with either presented fully functional surface timers, 50% of which were uncleaved. A panel of neutralizing and non-neutralizing Abs were tested for binding to the trimers. Consistent with CD4bs bNAbs, PGV04 bound cell surface tightly whether the trimer contained its C-terminal or not, and was competed out by sCD4. It was able to neutralize the 92UG037.8 HIV-1 isolate.
Chen2015
(neutralization, binding affinity)
-
PGV04: Factors that independently affect bNAb induction and evolution were identified as viral load, length of untreated infection and viral diversity. Ethnically, black subjects induced bNAbs more than white subjects, but this did not correlate with type of Ab response. Fingerprint analyses of induced bNAbs showed strong subtype-dependency, with subtype B inducing significantly higher levels of CD4bs Abs and non-subtype B inducing V2-glycan specific Abs. Of the 239 bNAb antibody inducers found from 4,484 HIV-1 infected subjects,the top 105 inducers' neutralization fingerprint and epitope specificity was determined by comparison to the following antibodies - PG9, PG16, PGDM1400, PGT145 (V2 glycan); PGT121, PGT128, PGT130 (V3 glycan); VRC01, PGV04 (CD4bs) and PGT151 (interface) and 2F5, 4E10, 10E8 (MPER).
Rusert2016
(neutralization, broad neutralizer)
-
PGV04: PGT145 was used to positively isolate a subtype B Env trimer immunogen, B41 SOSIP.664-D7324, that exists in two conformations, closed and partially open. bNAbs tested against the trimer were able to neutralize the B41 pseudovirus with a wide range of potencies. All tested non-NAbs did not neutralize B41 (IC50 >50µg/ml). CD4bs bNAb, PGV04, was able to neutralize and bind B41 pseudovirus and trimer.
Pugach2015
-
PGV04: A new trimeric immunogen, BG505 SOSIP.664 gp140, was developed that bound and activated most known neutralizing antibodies but generally did not bind antibodies lacking neuralizing activity. This highly stable immunogen mimics the Env spike of subtype A transmitted/founder (T/F) HIV-1 strain, BG505. Anti-CD4bs bNAb PGV04 neutralized BG505.T332N, the pseudoviral equivalent of the immunogen BG505 SOSIP.664 gp140, and was shown to recognize and bind the immunogen too.
Sanders2013
(assay or method development, neutralization, binding affinity)
-
PG04: VRC01-class bNAb like PG04 protects animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. This paper describes modifications that expand the glVRC01-class antibody-recognition potential of the 426c Env.
McGuire2016
(antibody interactions, antibody lineage)
-
VRC-PG04: This study presented structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb–426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. It reported that unlike most antibodies, the overall final structures of VRC01 class antibodies are formed before the antibodies mature. PG04 had the highest net charge of all the VRC01-class antibodies studied.
Scharf2016
(structure)
-
PG04: This patent describes the derivation and usage of PG04 and PG05. The donor is coded as 27-374, a participant in IAVI Protocol G. Both VRC-PG-04 and VRC-PG-05 were isolated from B cells of this donor by selection for binding to peptide RSC3. VRC-PG-04, but not VRC-PG-05, is cross competed by CD4bs antibodies. PG04 was able to neutralize a wide range of pseudovirus entry into TZM-bl cells, including pseudovirus from clade A - 87% (n=24), B - 96% (n=26), and C - 79% (n=34).
Mascola2012
(neutralization, broad neutralizer)
-
VRC-PG04: The rate of maturation and extent of diversity for the VRC01 lineage were characterized through longitudinal sampling of peripheral B cell transcripts from donor 45 over 15 years and co-crystal structures. VRC01-lineage clades underwent continuous evolution, with rates of ˜2 substitutions per 100 nucleotides per year, comparable with HIV-1 evolution. 39 VRC01-lineage Abs segregated into three major clades, and all Abs from donor 45 contained a cysteine at position 98 (99 in some sequences due to a 1-aa insertion) which was used as a signature to assess membership in the VRC01 lineage. Of 1,041 curated NGS sequences assigned to the VRC01 lineage, six did not contain the cysteine while 1,035 did (99.4%). Structural comparison of VRC-PG04 heavy and light chains and binding surfaces were reported (Table-S5).
Wu2015
(structure, antibody lineage)
-
VRC-PG04: This study isolated 4 novel antibodies that bind the CD4 binding site of Env. Population-level analysis classified a diverse group of CD4bs antibodies into two types: CDR H3-dominated or VH-gene-restricted, each with distinct ontogenies. Structural data revealed that neutralization breadth was correlated with angle of approach of the antibodies to the CD4 binding region. VRC-PG04 was one of the antibodies in the VH-gene-restricted VRC01 class.
Zhou2015
(neutralization, structure, antibody lineage, broad neutralizer)
-
PGV04: Incomplete neutralization may decrease the ability of bnAbs to protect against HIV exposure. In order to determine the extent of non-sigmoidal slopes that plateau at <100% neutralization, a panel of 24 bnMAbs targeting different regions on Env was tested in a quantitative pseudovirus neutralization assay on a panel of 278 viral clones. All bNAbs had some viruses that they neutralized with a plateau <100%, but those targeting the V2 apex and MPER did so more often. All bnMAbs assayed had some viruses for which they had incomplete neutralization and non-sigmoidal neutralization curves. bNAbs were grouped into 3 groups based on their neutralization curves: group 1 antibodies neutralized more than 90% of susceptible viruses to >95% (PGT121-123, PGT125-128, PGT136, PGV04); group 2 was less effective, resulting in neutralization of 60-84% of susceptible viruses to >95% (b12, PGT130-131, PGT135, PGT137, PGT141-143, PGT145, 2G12, PG9); group 3 neutralized only 36-60% of susceptible viruses to >95% (PG16, PGT144, 2F5, 4E10). Two CD4bs-targeting Abs, b12 and PGV04, had high potential neutralization values, perhaps reflecting relative insensitivity to Env glycan expression.
McCoy2015
(neutralization)
-
PGV04: Clade A Env sequence, BG505, was identified to bind to bNAbs representative of most of the known NAb classes. This sequence is the best natural sequence match (73%) to the MRCA sequence from 19 Env sequences derived from PG9 and PG16 MAbs' donor. A point mutation at position L111A of BG505 enabled more efficient production of a stable gp120 monomer, preserving the major neutralization epitopes. The antisera produced by this adjuvanted formulation of gp120 competed with bnAbs from 3 classes of non-overlapping epitopes. PGV04 showed very high neutralization titer against BG505 pseudovirus as shown in Table 1.
Hoffenberg2013
(antibody interactions, neutralization)
-
VRC-PG04d74: The ontogeny of VRC01 class Abs was determined by enumerating VRC01-class characteristics in many donors by next-gen sequencing and X-ray crystallography. Analysis included VRC01 (donor NIH 45), VRC-PG04 (donor IAVI 74), VRC-CH31 (donor 0219), 3BNC117 (donor RU3), 12A21 (donor IAVI 57), and somatically related VRC-PG19,19b, 20, 20b MAbs from donor IAVI 23. Despite the sequence differences of VRC01-class Abs, exceeding 50%, Ab-gp120 cocrystal structures showed VRC01-class recognition to be remarkably similar.
Zhou2013a
(antibody sequence, structure, antibody lineage)
-
VRC-PG04: Next generation sequencing was applied to a new donor C38 (different from donor NIH45) to identify VRC01 class bNAbs. VRC01 class heavy chains were selected through a cross-donor phylogenetic analysis. VRC01 class light chains were identified through a five-amino-acid sequence motif. (CDR L3 length of 5 amino acids and Q or E at position 96 (Kabat numbering) or position 4 within the CDR L3 sequence.) VRC-PG04 was used to compare the heavy & light chain sequences as a template of VRC01 class Ab.
Zhu2013a
(antibody sequence)
-
VRC-PG04: A computational method to predict Ab epitopes at the residue level, based on structure and neutralization panels of diverse viral strains has been described. This method was evaluated using 19 Env-Abs, including VRC-PG04, against 181 diverse HIV-1 strains with available Ab-Ag complex structures.
Chuang2013
(computational epitope prediction)
-
VRC-PG04: "Neutralization fingerprints" for 30 neutralizing antibodies were determined using a panel of 34 diverse HIV-1 strains. 10 antibody clusters were defined: VRC01-like, PG9-like, PGT128-like, 2F5-like, 10E8-like and separate clusters for b12, CD4, 2G12, HJ16, 8ANC195. This mAb belongs to VRC01-like cluster.
Georgiev2013
(neutralization)
-
VRC-PG04: The antigenic properties of the HIV-1 Env outer domain were optimized to generate OD4.2.2 construct, from the KER2018 strain of clade A HIV-1, enabling it to bind antibodies such as VRC01 with nanomolar affinity. The crystal structure of OD4.2.2 in complex with VRC-PG04 was solved at 3.0-Å resolution and compared to known crystal structures. 1/3 of the outer domain structure appeared to be fixed in conformation, independent of alterations in termini, clade, or ligand, while other portions of the outer domain displayed substantial structural malleability.
Joyce2013
(structure)
-
VRC-PG04: A computational tool (Antibody Database) identifying Env residues affecting antibody activity was developed. As input, the tool incorporates antibody neutralization data from large published pseudovirus panels, corresponding viral sequence data and available structural information. The model consists of a set of rules that provide an estimated IC50 based on Env sequence data, and important residues are found by minimizing the difference between logarithms of actual and estimated IC50. The program was validated by analysis of MAb 8ANC195, which had unknown specificity. Predicted critical N-glycosylation for 8ANC195 were confirmed in vitro and in humanized mice. The key associated residues for each MAb are summarized in the Table 1 of the paper and also in the Neutralizing Antibody Contexts & Features tool at Los Alamos Immunology Database.
West2013
(glycosylation, computational epitope prediction)
-
VRC-PG04: Identification of broadly neutralizing antibodies, their epitopes on the HIV-1 spike, the molecular basis for their remarkable breadth, and the B cell ontogenies of their generation and maturation are reviewed. Ontogeny and structure-based classification is presented, based on MAb binding site, type (structural mode of recognition), class (related ontogenies in separate donors) and family (clonal lineage). This MAb's classification: gp120 CD4-binding site, CD4-mimicry by heavy chain, VRC01 class, VRC-PG04 family.
Kwong2012
(review, structure, broad neutralizer)
-
VRC-PG04: This review discusses how analysis of infection and vaccine candidate-induced antibodies and their genes may guide vaccine design. This MAb is listed as CD4 binding site bnAb, isolated after 2009 by fluorescence-activated cell sorting (FACS) using a resurfaced core gp120 molecule (RSC3).
Bonsignori2012b
(vaccine antigen design, vaccine-induced immune responses, review)
-
VRC-PG04: Somatic hypermutations are preferably found in CDR loops, which alter the Ab combining sites, but not the overall structure of the variable domain. FWR of CDR are usually resistant to and less tolerant of mutations. This study reports that most bnAbs require somatic mutations in the FWRs which provide flexibility, increasing Ab breadth and potency. To determine the consequence of FWR mutations the framework residues were reverted to the Ab's germline counterpart (FWR-GL) and binding and neutralizing properties were then evaluated. VRC-PG04 was used in comparing the Ab framework amino acid replacement vs. interactive surface area on Ab.
Klein2013
(neutralization, structure, antibody lineage)
-
PGV04: Glycan shield of HIV Env protein helps to escape the Ab recognition. Several of the PGT BnAbs interact directly with the HIV glycan coat. Crystal structures of Fabs PGT127 and PGT128 showed that the high neutralizing potency was mediated by cross-linking Env trimers on the viral surface. PGT128 was compared and referred as an order of magnitude more potent than PGV04.
Pejchal2011
(glycosylation, structure, broad neutralizer)
-
PGV04: Computational and crystallographic analysis and in vitro screening were employed to design a gp120 outer domain immunogen (eOD-GT6) that could bind to VRC01-class bNAbs and to their germline precursors. When multimerized on nanoparticles, eOD-GT6 activated germline and mature VRC01-class B cells and thus can be a promising vaccine prime. eOD-GT6 had 10 mutations relative to HXB2. Removal of glycans at positions 276 and 463 was necessary for GL affinity and removal of glycans at positions 386 and 403 also improved affinity. T278R, I371F, N460V are involved in the binding interface. L260F, K357R, G471S stabilize loops involved in the interface. eOD-GT6 bound both PGV04 mature and germline antibodies.
Jardine2013
(glycosylation, vaccine antigen design, structure, antibody lineage)
-
VRC-PG04: In order to increase recognition of CD4 by Env and to elicit stronger neutralizing antibodies against it, two Env probes were produced and tested - monomeric Env was stabilized by pocket filling mutations in the CD4bs (PF2) and trimeric Env was formed by appending trimerization motifs to soluble gp120/gp14. PF2-containing proteins were better recognized by bNMAb against CD4bs and more rapidly elicited neutralizing antibodies against the CD4bs. Trimeric Env, however, elicited a higher neutralization potency that mapped to the V3 region of gp120.
Feng2012
(neutralization)
-
VRC-PG04: The sera of 113 HIV-1 seroconverters from three cohorts were analyzed for binding to a set of well-characterized gp120 core and resurfaced stabilized core (RSC3) protein probes, and their cognate CD4bs knockout mutants. VRC01-PG04 bound very strongly to the gp120 core and RSC3, strongly bound to RSC3/G367R and RSC3 Δ3711 and weakly bound to gp120 core D368R and RSC3 Δ3711/P363N.
Lynch2012
(binding affinity)
-
VRC-PG04: The interaction of CD4bs-binding MAbs (VRC01, VRC-PG04) and V1V2 glycan-dependent MAbs (PG9, PG16) was analyzed. MAb binding and neutralization studies showed that these two Env targets to not cross-compete and that their combination can mediate additive neutralization. The combination of MAbs VRC01 and PG9 provides a predicted coverage of 97% of 208 isolates at IC50 < 50 μg/ml and of 91% at IC50 < 50 μg/ml. In contrast, the combination of PG9 and PG16 (or the combination of VRC01 and VRC-PG04) was only marginally better than either MAb alone.
Doria-Rose2012
(antibody interactions)
-
PGV04: Using U87 target cells, PGV04 neutralized 88% of 162 viruses, with IC50<50 μm/mg, with U87 target cells compared to 75% neutralized by PG9. The potency of neutralization was comparable. On the 97-virus panel, using TZM-bl target cells, the breadth of neutralization was similar, but PGV04 had increased potency. The neutralization potency of PG9, PG16, VRC01 and PGV04 was approximately 10-fold greater than that of MAbs b12, 2G12, 2F5 and 4E10. Alanine substitutions D279A, I420A and I423A abrogated PGV04 neutralization, but varied in their effects on VRC01, CD4-IgG and b12. In contrast to VRC01, PGV04 did not enhance 17b or X5 binding to their epitopes in the co-receptor region on the gp120 monomer, and in contrast to CD4, none of the CD4bs MAbs tested induced the 17b site on trimeric cleaved Env, suggesting that a degree of mimicry of CD4 by anti-CD4bs bnMAbs may be a consequence of binding to the CD4 epitope on monomeric gp120 rather than a neutralization mechanism.
Falkowska2012
(antibody binding site, antibody interactions, neutralization, broad neutralizer)
-
PGV04: Neutralizing antibody repertoires of 4 HIV-infected donors with remarkably broad and potent neutralizing responses were probed. 17 new monoclonal antibodies that neutralize broadly across clades were rescued. All MAbs exhibited broad cross-clade neutralizing activity, but several showed exceptional potency. Although PGV04 neutralized 88% of 162 isolates at IC50<50 μg/ml, it was almost 10-fold less potent than several new antibodies PGT 121-123 and 125-128, for which the median antibody concentration required to inhibit HIV activity by 50% or 90% (IC50 and IC90 values) was almost 10-fold lower than that of PG9, VRC01 and PGV04.
Walker2011
(neutralization, broad neutralizer)
-
VRC-PG04: Somatically related VRC01-like Mabs VRC-PG04 and PG04b were isolated from donor 74 infected with an A/D recombinant virus. PG04 and RG04b strongly bound to YU2 gp120 wild type and mutated proteins, HXB2 gp120 and antigenically resurfaced protein RSC3, but showed >100-fold less binding to δRSC3. Binding by each of the new antibodies to the CD4bs was competed by VRC01-03, by other CD4-binding-site antibodies and by CD4-Ig, but not by antibodies known to bind gp120 at other sites. Sequence analysis revealed that, like other VRC01-like antibodies, RG04 and RG04b heavy chains originated from precursor gene allele IGHV1-2*02. The light chains originated from an IGkV3 allele. VRC-PG04 and PG04b displayed a heavy-chain–variable gene (VH) mutation frequency of 30% relative to the germline IGHV1-2*02 allele, a level of affinity maturation similar to that previously observed with VRC01-03. Both PG04 and PH04b are potent neutralizers - PG04 neutralized 76% of 178 isolates, representing major HIV-1 clades. The structure of VRC-PG04 in complex with gp120 showed striking similarity with the previously determined complex with VRC01, despite low sequence identity and different donors. Heavy- and light-chain cross-pairing chimeras of VRC01, VRC03, VRC-PG04, VRC-CH31 with each other and with sequences obtained by deep sequencing could neutralize up to 90% of 20 clade A, B and C viruses.
Wu2011
(antibody generation, neutralization, antibody sequence, structure)
References
Showing 42 of
42 references.
Isolation Paper
Wu2011
Xueling Wu, Tongqing Zhou, Jiang Zhu, Baoshan Zhang, Ivelin Georgiev, Charlene Wang, Xuejun Chen, Nancy S. Longo, Mark Louder, Krisha McKee, Sijy O'Dell, Stephen Perfetto, Stephen D. Schmidt, Wei Shi, Lan Wu, Yongping Yang, Zhi-Yong Yang, Zhongjia Yang, Zhenhai Zhang, Mattia Bonsignori, John A. Crump, Saidi H. Kapiga, Noel E. Sam, Barton F. Haynes, Melissa Simek, Dennis R. Burton, Wayne C. Koff, Nicole A. Doria-Rose, Mark Connors, NISC Comparative Sequencing Program, James C. Mullikin, Gary J. Nabel, Mario Roederer, Lawrence Shapiro, Peter D. Kwong, and John R. Mascola. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science, 333(6049):1593-1602, 16 Sep 2011. PubMed ID: 21835983.
Show all entries for this paper.
Bonsignori2012b
Mattia Bonsignori, S. Munir Alam, Hua-Xin Liao, Laurent Verkoczy, Georgia D. Tomaras, Barton F. Haynes, and M. Anthony Moody. HIV-1 Antibodies from Infection and Vaccination: Insights for Guiding Vaccine Design. Trends Microbiol., 20(11):532-539, Nov 2012. PubMed ID: 22981828.
Show all entries for this paper.
Bricault2019
Christine A. Bricault, Karina Yusim, Michael S. Seaman, Hyejin Yoon, James Theiler, Elena E. Giorgi, Kshitij Wagh, Maxwell Theiler, Peter Hraber, Jennifer P. Macke, Edward F. Kreider, Gerald H. Learn, Beatrice H. Hahn, Johannes F. Scheid, James M. Kovacs, Jennifer L. Shields, Christy L. Lavine, Fadi Ghantous, Michael Rist, Madeleine G. Bayne, George H. Neubauer, Katherine McMahan, Hanqin Peng, Coraline Chéneau, Jennifer J. Jones, Jie Zeng, Christina Ochsenbauer, Joseph P. Nkolola, Kathryn E. Stephenson, Bing Chen, S. Gnanakaran, Mattia Bonsignori, LaTonya D. Williams, Barton F. Haynes, Nicole Doria-Rose, John R. Mascola, David C. Montefiori, Dan H. Barouch, and Bette Korber. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe, 25(1):59-72.e8, 9 Jan 2019. PubMed ID: 30629920.
Show all entries for this paper.
Briney2016
Bryan Briney, Devin Sok, Joseph G. Jardine, Daniel W. Kulp, Patrick Skog, Sergey Menis, Ronald Jacak, Oleksandr Kalyuzhniy, Natalia de Val, Fabian Sesterhenn, Khoa M. Le, Alejandra Ramos, Meaghan Jones, Karen L. Saye-Francisco, Tanya R. Blane, Skye Spencer, Erik Georgeson, Xiaozhen Hu, Gabriel Ozorowski, Yumiko Adachi, Michael Kubitz, Anita Sarkar, Ian A. Wilson, Andrew B. Ward, David Nemazee, Dennis R. Burton, and William R. Schief. Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 166(6):1459-1470.e11, 8 Sep 2016. PubMed ID: 27610570.
Show all entries for this paper.
Chen2015
Jia Chen, James M. Kovacs, Hanqin Peng, Sophia Rits-Volloch, Jianming Lu, Donghyun Park, Elise Zablowsky, Michael S. Seaman, and Bing Chen. Effect of the Cytoplasmic Domain on Antigenic Characteristics of HIV-1 Envelope Glycoprotein. Science, 349(6244):191-195, 10 Jul 2015. PubMed ID: 26113642.
Show all entries for this paper.
Chuang2013
Gwo-Yu Chuang, Priyamvada Acharya, Stephen D. Schmidt, Yongping Yang, Mark K. Louder, Tongqing Zhou, Young Do Kwon, Marie Pancera, Robert T. Bailer, Nicole A. Doria-Rose, Michel C. Nussenzweig, John R. Mascola, Peter D. Kwong, and Ivelin S. Georgiev. Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. J. Virol., 87(18):10047-10058, Sep 2013. PubMed ID: 23843642.
Show all entries for this paper.
Clark2017
Anthony J. Clark, Tatyana Gindin, Baoshan Zhang, Lingle Wang, Robert Abel, Colleen S. Murret, Fang Xu, Amy Bao, Nina J. Lu, Tongqing Zhou, Peter D. Kwong, Lawrence Shapiro, Barry Honig, and Richard A. Friesner. Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1. J. Mol. Biol., 429(7):930-947, 7 Apr 2017. PubMed ID: 27908641.
Show all entries for this paper.
Davenport2016
Thaddeus M. Davenport, Jason Gorman, M. Gordon Joyce, Tongqing Zhou, Cinque Soto, Miklos Guttman, Stephanie Moquin, Yongping Yang, Baoshan Zhang, Nicole A. Doria-Rose, Shiu-Lok Hu, John R. Mascola, Peter D. Kwong, and Kelly K. Lee. Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 20 Jul 2016. PubMed ID: 27477385.
Show all entries for this paper.
Doria-Rose2012
Nicole A. Doria-Rose, Mark K. Louder, Zhongjia Yang, Sijy O'Dell, Martha Nason, Stephen D. Schmidt, Krisha McKee, Michael S. Seaman, Robert T. Bailer, and John R. Mascola. HIV-1 Neutralization Coverage Is Improved by Combining Monoclonal Antibodies That Target Independent Epitopes. J. Virol., 86(6):3393-3397, Mar 2012. PubMed ID: 22258252.
Show all entries for this paper.
Doria-Rose2017
Nicole A. Doria-Rose, Han R. Altae-Tran, Ryan S. Roark, Stephen D. Schmidt, Matthew S. Sutton, Mark K. Louder, Gwo-Yu Chuang, Robert T. Bailer, Valerie Cortez, Rui Kong, Krisha McKee, Sijy O'Dell, Felicia Wang, Salim S. Abdool Karim, James M. Binley, Mark Connors, Barton F. Haynes, Malcolm A. Martin, David C. Montefiori, Lynn Morris, Julie Overbaugh, Peter D. Kwong, John R. Mascola, and Ivelin S. Georgiev. Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathog., 13(1):e1006148, Jan 2017. PubMed ID: 28052137.
Show all entries for this paper.
Easterhoff2017
David Easterhoff, M. Anthony Moody, Daniela Fera, Hao Cheng, Margaret Ackerman, Kevin Wiehe, Kevin O. Saunders, Justin Pollara, Nathan Vandergrift, Rob Parks, Jerome Kim, Nelson L. Michael, Robert J. O'Connell, Jean-Louis Excler, Merlin L. Robb, Sandhya Vasan, Supachai Rerks-Ngarm, Jaranit Kaewkungwal, Punnee Pitisuttithum, Sorachai Nitayaphan, Faruk Sinangil, James Tartaglia, Sanjay Phogat, Thomas B. Kepler, S. Munir Alam, Hua-Xin Liao, Guido Ferrari, Michael S. Seaman, David C. Montefiori, Georgia D. Tomaras, Stephen C. Harrison, and Barton F. Haynes. Boosting of HIV Envelope CD4 Binding Site Antibodies with Long Variable Heavy Third Complementarity Determining Region in the Randomized Double Blind RV305 HIV-1 Vaccine Trial. PLoS Pathog., 13(2):e1006182, Feb 2017. PubMed ID: 28235027.
Show all entries for this paper.
Evans2014
Mark C. Evans, Pham Phung, Agnes C. Paquet, Anvi Parikh, Christos J. Petropoulos, Terri Wrin, and Mojgan Haddad. Predicting HIV-1 Broadly Neutralizing Antibody Epitope Networks Using Neutralization Titers and a Novel Computational Method. BMC Bioinformatics, 15:77, 19 Mar 2014. PubMed ID: 24646213.
Show all entries for this paper.
Falkowska2012
Emilia Falkowska, Alejandra Ramos, Yu Feng, Tongqing Zhou, Stephanie Moquin, Laura M. Walker, Xueling Wu, Michael S. Seaman, Terri Wrin, Peter D. Kwong, Richard T. Wyatt, John R. Mascola, Pascal Poignard, and Dennis R. Burton. PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4. J. Virol., 86(8):4394-4403, Apr 2012. PubMed ID: 22345481.
Show all entries for this paper.
Feng2012
Yu Feng, Krisha McKee, Karen Tran, Sijy O'Dell, Stephen D. Schmidt, Adhuna Phogat, Mattias N. Forsell, Gunilla B. Karlsson Hedestam, John R. Mascola, and Richard T. Wyatt. Biochemically Defined HIV-1 Envelope Glycoprotein Variant Immunogens Display Differential Binding and Neutralizing Specificities to the CD4-Binding Site. J. Biol. Chem., 287(8):5673-5686, 17 Feb 2012. PubMed ID: 22167180.
Show all entries for this paper.
Georgiev2013
Ivelin S. Georgiev, Nicole A. Doria-Rose, Tongqing Zhou, Young Do Kwon, Ryan P. Staupe, Stephanie Moquin, Gwo-Yu Chuang, Mark K. Louder, Stephen D. Schmidt, Han R. Altae-Tran, Robert T. Bailer, Krisha McKee, Martha Nason, Sijy O'Dell, Gilad Ofek, Marie Pancera, Sanjay Srivatsan, Lawrence Shapiro, Mark Connors, Stephen A. Migueles, Lynn Morris, Yoshiaki Nishimura, Malcolm A. Martin, John R. Mascola, and Peter D. Kwong. Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 340(6133):751-756, 10 May 2013. PubMed ID: 23661761.
Show all entries for this paper.
Hoffenberg2013
Simon Hoffenberg, Rebecca Powell, Alexei Carpov, Denise Wagner, Aaron Wilson, Sergei Kosakovsky Pond, Ross Lindsay, Heather Arendt, Joanne DeStefano, Sanjay Phogat, Pascal Poignard, Steven P. Fling, Melissa Simek, Celia LaBranche, David Montefiori, Terri Wrin, Pham Phung, Dennis Burton, Wayne Koff, C. Richter King, Christopher L. Parks, and Michael J. Caulfield. Identification of an HIV-1 Clade A Envelope That Exhibits Broad Antigenicity and Neutralization Sensitivity and Elicits Antibodies Targeting Three Distinct Epitopes. J. Virol., 87(10):5372-5383, May 2013. PubMed ID: 23468492.
Show all entries for this paper.
Jardine2013
Joseph Jardine, Jean-Philippe Julien, Sergey Menis, Takayuki Ota, Oleksandr Kalyuzhniy, Andrew McGuire, Devin Sok, Po-Ssu Huang, Skye MacPherson, Meaghan Jones, Travis Nieusma, John Mathison, David Baker, Andrew B. Ward, Dennis R. Burton, Leonidas Stamatatos, David Nemazee, Ian A. Wilson, and William R. Schief. Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 340(6133):711-716, 10 May 2013. PubMed ID: 23539181.
Show all entries for this paper.
Joyce2013
M. Gordon Joyce, Masaru Kanekiyo, Ling Xu, Christian Biertümpfel, Jeffrey C. Boyington, Stephanie Moquin, Wei Shi, Xueling Wu, Yongping Yang, Zhi-Yong Yang, Baoshan Zhang, Anqi Zheng, Tongqing Zhou, Jiang Zhu, John R. Mascola, Peter D. Kwong, and Gary J. Nabel. Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. J. Virol., 87(4):2294-2306, Feb 2013. PubMed ID: 23236069.
Show all entries for this paper.
Kesavardhana2017
Sannula Kesavardhana, Raksha Das, Michael Citron, Rohini Datta, Linda Ecto, Nonavinakere Seetharam Srilatha, Daniel DiStefano, Ryan Swoyer, Joseph G. Joyce, Somnath Dutta, Celia C. LaBranche, David C. Montefiori, Jessica A. Flynn, and Raghavan Varadarajan. Structure-Based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. J. Biol. Chem., 292(1):278-291, 6 Jan 2017. PubMed ID: 27879316.
Show all entries for this paper.
Klein2013
Florian Klein, Ron Diskin, Johannes F. Scheid, Christian Gaebler, Hugo Mouquet, Ivelin S. Georgiev, Marie Pancera, Tongqing Zhou, Reha-Baris Incesu, Brooks Zhongzheng Fu, Priyanthi N. P. Gnanapragasam, Thiago Y. Oliveira, Michael S. Seaman, Peter D. Kwong, Pamela J. Bjorkman, and Michel C. Nussenzweig. Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 153(1):126-138, 28 Mar 2013. PubMed ID: 23540694.
Show all entries for this paper.
Kwong2012
Peter D. Kwong and John R. Mascola. Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity, 37(3):412-425, 21 Sep 2012. PubMed ID: 22999947.
Show all entries for this paper.
Lynch2012
Rebecca M. Lynch, Lillian Tran, Mark K. Louder, Stephen D. Schmidt, Myron Cohen, CHAVI 001 Clinical Team Members, Rebecca DerSimonian, Zelda Euler, Elin S. Gray, Salim Abdool Karim, Jennifer Kirchherr, David C. Montefiori, Sengeziwe Sibeko, Kelly Soderberg, Georgia Tomaras, Zhi-Yong Yang, Gary J. Nabel, Hanneke Schuitemaker, Lynn Morris, Barton F. Haynes, and John R. Mascola. The Development of CD4 Binding Site Antibodies during HIV-1 Infection. J. Virol., 86(14):7588-7595, Jul 2012. PubMed ID: 22573869.
Show all entries for this paper.
Mascola2012
J. Mascola, D. R. Burton, W. Koff, P. Kwong, G. Nabel, S. K. Phogat, P. R. G. Poignard, M. D. De Jean De St. Marcel Simek-Lemos, X. Wu, and Z. Y. Yang. HIV-1 Broadly Neutralizing Antibodies. US patent 9,382,311, 5 Jul 2016. URL: https://patentscope.wipo.int/search/en/detail.jsf?docId=US91507326.
Show all entries for this paper.
McCoy2015
Laura E. McCoy, Emilia Falkowska, Katie J. Doores, Khoa Le, Devin Sok, Marit J. van Gils, Zelda Euler, Judith A. Burger, Michael S. Seaman, Rogier W. Sanders, Hanneke Schuitemaker, Pascal Poignard, Terri Wrin, and Dennis R. Burton. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathog., 11(8):e1005110, Aug 2015. PubMed ID: 26267277.
Show all entries for this paper.
McGuire2016
Andrew T. McGuire, Matthew D. Gray, Pia Dosenovic, Alexander D. Gitlin, Natalia T. Freund, John Petersen, Colin Correnti, William Johnsen, Robert Kegel, Andrew B. Stuart, Jolene Glenn, Michael S. Seaman, William R. Schief, Roland K. Strong, Michel C. Nussenzweig, and Leonidas Stamatatos. Specifically Modified Env Immunogens Activate B-Cell Precursors of Broadly Neutralizing HIV-1 Antibodies in Transgenic Mice. Nat. Commun., 7:10618, 24 Feb 2016. PubMed ID: 26907590.
Show all entries for this paper.
Pejchal2011
Robert Pejchal, Katie J. Doores, Laura M. Walker, Reza Khayat, Po-Ssu Huang, Sheng-Kai Wang, Robyn L. Stanfield, Jean-Philippe Julien, Alejandra Ramos, Max Crispin, Rafael Depetris, Umesh Katpally, Andre Marozsan, Albert Cupo, Sebastien Maloveste, Yan Liu, Ryan McBride, Yukishige Ito, Rogier W. Sanders, Cassandra Ogohara, James C. Paulson, Ten Feizi, Christopher N. Scanlan, Chi-Huey Wong, John P. Moore, William C. Olson, Andrew B. Ward, Pascal Poignard, William R. Schief, Dennis R. Burton, and Ian A. Wilson. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 334(6059):1097-1103, 25 Nov 2011. PubMed ID: 21998254.
Show all entries for this paper.
Pugach2015
Pavel Pugach, Gabriel Ozorowski, Albert Cupo, Rajesh Ringe, Anila Yasmeen, Natalia de Val, Ronald Derking, Helen J. Kim, Jacob Korzun, Michael Golabek, Kevin de Los Reyes, Thomas J. Ketas, Jean-Philippe Julien, Dennis R. Burton, Ian A. Wilson, Rogier W. Sanders, P. J. Klasse, Andrew B. Ward, and John P. Moore. A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene. J. Virol., 89(6):3380-3395, Mar 2015. PubMed ID: 25589637.
Show all entries for this paper.
Rusert2016
Peter Rusert, Roger D. Kouyos, Claus Kadelka, Hanna Ebner, Merle Schanz, Michael Huber, Dominique L. Braun, Nathanael Hozé, Alexandra Scherrer, Carsten Magnus, Jacqueline Weber, Therese Uhr, Valentina Cippa, Christian W. Thorball, Herbert Kuster, Matthias Cavassini, Enos Bernasconi, Matthias Hoffmann, Alexandra Calmy, Manuel Battegay, Andri Rauch, Sabine Yerly, Vincent Aubert, Thomas Klimkait, Jürg Böni, Jacques Fellay, Roland R. Regoes, Huldrych F. Günthard, Alexandra Trkola, and Swiss HIV Cohort Study. Determinants of HIV-1 Broadly Neutralizing Antibody Induction. Nat. Med., 22(11):1260-1267, Nov 2016. PubMed ID: 27668936.
Show all entries for this paper.
Sanders2013
Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931.
Show all entries for this paper.
Scharf2016
Louise Scharf, Anthony P. West, Jr., Stuart A. Sievers, Courtney Chen, Siduo Jiang, Han Gao, Matthew D. Gray, Andrew T. McGuire, Johannes F. Scheid, Michel C. Nussenzweig, Leonidas Stamatatos, and Pamela J. Bjorkman. Structural Basis for Germline Antibody Recognition of HIV-1 Immunogens. Elife, 5, 21 Mar 2016. PubMed ID: 26997349.
Show all entries for this paper.
Schiffner2018
Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590.
Show all entries for this paper.
Stewart-Jones2016
Guillaume B. E. Stewart-Jones, Cinque Soto, Thomas Lemmin, Gwo-Yu Chuang, Aliaksandr Druz, Rui Kong, Paul V. Thomas, Kshitij Wagh, Tongqing Zhou, Anna-Janina Behrens, Tatsiana Bylund, Chang W. Choi, Jack R. Davison, Ivelin S. Georgiev, M. Gordon Joyce, Young Do Kwon, Marie Pancera, Justin Taft, Yongping Yang, Baoshan Zhang, Sachin S. Shivatare, Vidya S. Shivatare, Chang-Chun D. Lee, Chung-Yi Wu, Carole A. Bewley, Dennis R. Burton, Wayne C. Koff, Mark Connors, Max Crispin, Ulrich Baxa, Bette T. Korber, Chi-Huey Wong, John R. Mascola, and Peter D. Kwong. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 165(4):813-826, 5 May 2016. PubMed ID: 27114034.
Show all entries for this paper.
vonBredow2016
Benjamin von Bredow, Juan F. Arias, Lisa N. Heyer, Brian Moldt, Khoa Le, James E. Robinson, Susan Zolla-Pazner, Dennis R. Burton, and David T. Evans. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. J. Virol., 90(13):6127-6139, 1 Jul 2016. PubMed ID: 27122574.
Show all entries for this paper.
Walker2011
Laura M. Walker, Michael Huber, Katie J. Doores, Emilia Falkowska, Robert Pejchal, Jean-Philippe Julien, Sheng-Kai Wang, Alejandra Ramos, Po-Ying Chan-Hui, Matthew Moyle, Jennifer L. Mitcham, Phillip W. Hammond, Ole A. Olsen, Pham Phung, Steven Fling, Chi-Huey Wong, Sanjay Phogat, Terri Wrin, Melissa D. Simek, Protocol G. Principal Investigators, Wayne C. Koff, Ian A. Wilson, Dennis R. Burton, and Pascal Poignard. Broad Neutralization Coverage of HIV by Multiple Highly Potent Antibodies. Nature, 477(7365):466-470, 22 Sep 2011. PubMed ID: 21849977.
Show all entries for this paper.
Walker2018
Laura M. Walker and Dennis R. Burton. Passive Immunotherapy of Viral Infections: `Super-Antibodies' Enter the Fray. Nat. Rev. Immunol., 18(5):297-308, May 2018. PubMed ID: 29379211.
Show all entries for this paper.
West2013
Anthony P. West, Jr., Louise Scharf, Joshua Horwitz, Florian Klein, Michel C. Nussenzweig, and Pamela J. Bjorkman. Computational Analysis of Anti-HIV-1 Antibody Neutralization Panel Data to Identify Potential Functional Epitope Residues. Proc. Natl. Acad. Sci. U.S.A., 110(26):10598-10603, 25 Jun 2013. PubMed ID: 23754383.
Show all entries for this paper.
Wu2015
Xueling Wu, Zhenhai Zhang, Chaim A. Schramm, M. Gordon Joyce, Young Do Kwon, Tongqing Zhou, Zizhang Sheng, Baoshan Zhang, Sijy O'Dell, Krisha McKee, Ivelin S. Georgiev, Gwo-Yu Chuang, Nancy S. Longo, Rebecca M. Lynch, Kevin O. Saunders, Cinque Soto, Sanjay Srivatsan, Yongping Yang, Robert T. Bailer, Mark K. Louder, NISC Comparative Sequencing Program, James C. Mullikin, Mark Connors, Peter D. Kwong, John R. Mascola, and Lawrence Shapiro. Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 161(3):470-485, 23 Apr 2015. PubMed ID: 25865483.
Show all entries for this paper.
Wu2016
Xueling Wu and Xiang-Peng Kong. Antigenic Landscape of the HIV-1 Envelope and New Immunological Concepts Defined by HIV-1 Broadly Neutralizing Antibodies. Curr. Opin. Immunol., 42:56-64, Oct 2016. PubMed ID: 27289425.
Show all entries for this paper.
Zhou2013a
Tongqing Zhou, Jiang Zhu, Xueling Wu, Stephanie Moquin, Baoshan Zhang, Priyamvada Acharya, Ivelin S. Georgiev, Han R. Altae-Tran, Gwo-Yu Chuang, M. Gordon Joyce, Young Do Kwon, Nancy S. Longo, Mark K. Louder, Timothy Luongo, Krisha McKee, Chaim A. Schramm, Jeff Skinner, Yongping Yang, Zhongjia Yang, Zhenhai Zhang, Anqi Zheng, Mattia Bonsignori, Barton F. Haynes, Johannes F. Scheid, Michel C. Nussenzweig, Melissa Simek, Dennis R. Burton, Wayne C. Koff, NISC Comparative Sequencing Program, James C. Mullikin, Mark Connors, Lawrence Shapiro, Gary J. Nabel, John R. Mascola, and Peter D. Kwong. Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 39(2):245-258, 22 Aug 2013. PubMed ID: 23911655.
Show all entries for this paper.
Zhou2015
Tongqing Zhou, Rebecca M. Lynch, Lei Chen, Priyamvada Acharya, Xueling Wu, Nicole A. Doria-Rose, M. Gordon Joyce, Daniel Lingwood, Cinque Soto, Robert T. Bailer, Michael J. Ernandes, Rui Kong, Nancy S. Longo, Mark K. Louder, Krisha McKee, Sijy O'Dell, Stephen D. Schmidt, Lillian Tran, Zhongjia Yang, Aliaksandr Druz, Timothy S. Luongo, Stephanie Moquin, Sanjay Srivatsan, Yongping Yang, Baoshan Zhang, Anqi Zheng, Marie Pancera, Tatsiana Kirys, Ivelin S. Georgiev, Tatyana Gindin, Hung-Pin Peng, An-Suei Yang, NISC Comparative Sequencing Program, James C. Mullikin, Matthew D. Gray, Leonidas Stamatatos, Dennis R. Burton, Wayne C. Koff, Myron S. Cohen, Barton F. Haynes, Joseph P. Casazza, Mark Connors, Davide Corti, Antonio Lanzavecchia, Quentin J. Sattentau, Robin A. Weiss, Anthony P. West, Jr., Pamela J. Bjorkman, Johannes F. Scheid, Michel C. Nussenzweig, Lawrence Shapiro, John R. Mascola, and Peter D. Kwong. Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 161(6):1280-1292, 4 Jun 2015. PubMed ID: 26004070.
Show all entries for this paper.
Zhou2018
Tongqing Zhou, Anqi Zheng, Ulrich Baxa, Gwo-Yu Chuang, Ivelin S. Georgiev, Rui Kong, Sijy O'Dell, Syed Shahzad-Ul-Hussan, Chen-Hsiang Shen, Yaroslav Tsybovsky, Robert T. Bailer, Syna K. Gift, Mark K. Louder, Krisha McKee, Reda Rawi, Catherine H. Stevenson, Guillaume B. E. Stewart-Jones, Justin D. Taft, Eric Waltari, Yongping Yang, Baoshan Zhang, Sachin S. Shivatare, Vidya S. Shivatare, Chang-Chun D. Lee, Chung-Yi Wu, James C. Mullikin, Carole A. Bewley, Dennis R. Burton, Victoria R. Polonis, Lawrence Shapiro, Chi-Huey Wong, John R. Mascola, Peter D. Kwong, and Xueling Wu. A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity, 48(3):500-513e6 doi, Mar 2018. PubMed ID: 29548671
Show all entries for this paper.
Zhu2013a
Jiang Zhu, Xueling Wu, Baoshan Zhang, Krisha McKee, Sijy O'Dell, Cinque Soto, Tongqing Zhou, Joseph P. Casazza, NISC Comparative Sequencing Program, James C. Mullikin, Peter D. Kwong, John R. Mascola, and Lawrence Shapiro. De Novo Identification of VRC01 Class HIV-1-Neutralizing Antibodies by Next-Generation Sequencing of B-Cell Transcripts. Proc. Natl. Acad. Sci. U.S.A., 110(43):E4088-E4097, 22 Oct 2013. PubMed ID: 24106303.
Show all entries for this paper.