Found 1 matching record:
Displaying record number 1589
Download this epitope
record as JSON.
MAb ID |
Z13e1 |
HXB2 Location |
gp160(666-677) DNA(8220..8255) |
gp160 Epitope Map
|
Author Location |
|
Research Contact |
Michael Zwick, The Scripps Research Insitute, zwick@scripps.edu |
Epitope |
WASLWNWFDITN
|
Epitope Alignment
|
Subtype |
B |
Ab Type |
gp41 MPER (membrane proximal external region) |
Neutralizing |
P View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human |
Patient |
FDA2 |
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody lineage, antibody polyreactivity, antibody sequence, assay or method development, binding affinity, broad neutralizer, computational epitope prediction, dynamics, HAART, ART, kinetics, neutralization, polyclonal antibodies, review, structure, subtype comparisons, vaccine antigen design, variant cross-reactivity, viral fitness and reversion |
Notes
Showing 33 of
33 notes.
-
Z13e1: The study identified a primary HIV-1 Env variant from patient 653116 that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. In the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. This phenotype was mapped to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. The authors provide evidence that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Anti-cluster I monoclonal antibodies (240-D, 246-D, F240, T32) targeting HR1 and the C-C loop of gp41 restored infectivity defects observed with Q563R. Viruses with the Q563R mutation were shown to have increased sensitivity to MPER mAbs (10E8, 7H6, 2F5, Z13e1, 4E10).
Joshi2020
(viral fitness and reversion)
-
Z13e1: An R5 virus isolated from chronic patient NAB01 (Patient Record# 4723) was adapted in culture to growth in the presence of target cells expressing reduced levels of CD4. Entry kinetics of the virus were altered, and these alterations resulted in extended exposure of CD4-induced neutralization-sensitive epitopes to CD4. Adapted and control viruses were assayed for their neutralization by a panel of neutralizing antibodies targeting several different regions of Env (PGT121, PGT128, 1-79, 447-52d, b6, b12, VRC01, 17b, 4E10, 2F5, Z13e1). Adapted viruses showed greater sensitivity to antibodies targeting the CD4 binding site and the V3 loop. This evolution of Env resulted in increased CD4 affinity but decreased viral fitness, a phenomenon seen also in the immune-privileged CNS, particularly in macrophages.
Beauparlant2017
(neutralization, viral fitness and reversion, dynamics, kinetics)
-
Z13e1: This study reported three lineages of bNAbs RV217-VRC42.01, VRC43.01 and VRC46.01 from an individual in the prospective RV217 cohort,targeting the MPER. These Abs used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation, normal Ab-loop lengths and were initiated by the founder virus MPER.
Krebs2019
(structure, antibody lineage, broad neutralizer)
-
z13e1: This study demonstrated that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens eliciting Ab responses with greater neutralization breadth. Data from four large virus panels were used to comprehensively map viral signatures associated with bNAb sensitivity, hypervariable region characteristics, and clade effects. The bNAb signatures defined for the V2 epitope region were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine which resulted in increased breadth of NAb responses compared with Env 459C alone. z13e1 was used to compare and analyze the IC50 values of bNAbs to establish the foundational datasets.
Bricault2019
(antibody binding site, vaccine antigen design, computational epitope prediction, broad neutralizer)
-
Z13e1: Polyreactive properties of natural and artificially engineered HIV-1 bNAbs were studied, with almost 60% of the tested HIV-1 bNAbs (including this one) exhibiting low to high polyreactivity in different immunoassays. A previously unappreciated polyreactive binding for PGT121, PGT128, NIH45-46W, m2, and m7 was reported. Binding affinity, thermodynamic, and molecular dynamics analyses revealed that the co-emergence of enhanced neutralizing capacities and polyreactivity was due to an intrinsic conformational flexibility of the antigen-binding sites of bNAbs, allowing a better accommodation of divergent HIV-1 Env variants.
Prigent2018
(antibody polyreactivity)
-
Z13e1: A gp41 immunogen, gp41-HR1-54Q, was developed, consisting of shortened heptad repeat regions 1 and 2 and the MPER. It was efficiently recognized by 3 MPER-binding Abs (2F5, Z13e1 and 4E10). In rabbits, the antigen was highly immunogenic but failed to develop neutralization ability.
Habte2015
(vaccine antigen design)
-
Z13e1: This study reported the Ab binding titers and neutralization of 51 patients with chronic HIV-1 infection on supressive ART for 3 yrs. A high titer of Ab against gp120, gp41, and MPER was found. Patient sera, Z13e1, and a serum control were evaluated for binding against recombinant gp120JR-FL mutants lacking either the V1/V2 loop or the V3 loop. Significantly higher end point binding titers and HIV1JR-FL neutralization were noticed in patients with >10 compared to <10 yrs of detectable HIV RNA.
Gach2014
(neutralization, HAART, ART)
-
Z13e1: This study shows that epitope mapping of plasma antibodies followed by the rational design of MPER peptide tetramer can successfully isolate antigen-reactive single B cells for Ig rescue. Recombinant mAb CAP206-CH12 was isolated using the peptide tetramer antigen. This is a polyreactive mAb and its CDRH3 sequence is similar to Z13e1 . CAP206-CH12 overlapped the Z13e1 epitope. Comparison of IC50 suggested that CAP206-CH12 is similar in potency to Z13e1.
Morris2011
(antibody sequence)
-
Z13e1: Polyclonal B cell responses to conserved neutralization epitopes are reported. Cross-reactive plasma samples were identified and evaluated from 308 subjects tested. Z13e1 was used as a control mAb in the comprehensive set of assays performed. Plasma samples C1-0269, C1-0534 and C1-0536 showed activities similar to Z13e1.
Tomaras2011
(neutralization, polyclonal antibodies)
-
z13e1: The rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1 is discussed in relation to understanding of vaccine recognition sites, the structural basis of interaction with HIV-1 env and vaccine developmental pathways. z13e1 has been discussed regarding the sites of HIV-1 vulnerability to neutralizing antibodies and particularly recognition of highly conserved MPER region of Env.
Kwong2011
(antibody binding site, neutralization, vaccine antigen design, review)
-
Z13e1: Antigenic properties of undigested VLPs and endo H-digested WT trimer VLPs were compared. Z13e1 was 100-fold more sensitive to trimer VLPs than other MAbs suggesting increased exposure of the gp41 base. Binding to E168K+ N189A WT VLPs was stronger than binding to the parent WT VLPs and uncleaved VLPs. There was no significant correlation between E168K+N189A WT VLP binding and Z13e1 neutralization, while trimer VLP ELISA binding and neutralization exhibited a significant correlation. BN-PAGE shifts using digested E168K + N189A WT trimer VLPs exhibited prominence compared to WT VLPs.
Tong2012
(neutralization, binding affinity)
-
Z13e1: A novel protein (Z13-II22-2) that binds to FAb Z13e1 with a Kd of 73 nM has been designed, cloned, expressed and purified. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, suggesting conformational changes occurring in the Fab, in Z13-IL-22, or in both.
Stanfield2011
(structure)
-
Z13e1: Anti-MPER MAbs 4E10, 2F5 and Z13e1 were probed for binding to HIV-1 and SIV virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. The MAbs moderately associated with virions, including those devoid of MPER epitopes, and this interaction was strong enough to resist washout. MPER epitope-bearing virions liganded with CD4 showed a much higher association of anti-MPER antibodies compared to the unliganded virions. The results are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.
Rathinakumar2012
(binding affinity)
-
Z13e1: MPER antigenicity was analyzed in the context of the plasma membrane and a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt MAbs (2F5, 4E10, and Z13e1) was identified. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization.
Montero2012
(antibody binding site)
-
z13e1: A novel function for lentiviral Nef is reported: it renders the HIV-1 virion refractory to the broadly-neutralizing antibodies 2F5 and 4E10. Nef conferred 50-fold resistance to 2F5 and 4E10, but had no effect on HIV-1 neutralization by MPER-specific NAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Given the membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, it is suggested that Nef alters MPER recognition in the context of the virion membrane.
Lai2011
(neutralization)
-
Z13e1: To test whether HIV-1 particle maturation alters the conformation of the Env proteins, a sensitive and quantitative imaging-based Ab-binding assay was used to probe the conformations of full-length and cytoplasmic tail (CT) truncated Env proteins on mature and immature HIV-1 particles. Binding of MPER-specific MAb Z13e1 to immature particles was greater than to mature virions and the increase was abolished by truncation of the gp41 CT. Z13e1 bound immature particles approximately 1.5 to 2 times as well as mature particles when the median binding signals were compared indicating that the recognized neutralization-sensitive epitopes undergo conformational masking during HIV-1 particle maturation.
Joyner2011
(binding affinity)
-
Z13e1: A high resolution gp41 structure, termed HR1-54Q was presented consisting of the N-terminal helical heptad repeat (HR1), the C-terminal helical heptad repeat (HR2), and the (membrane-proximal external region) MPER. HR1-54Q bound to 3 broadly neutralizing Abs that target gp41: 2F5, 4E10, Z13e1, as well as 98-6 MAb that recognizes the six-helix bundle. HR1-54Q possesses several structural characteristics required for induction of Z13e1 including the correct conformation and exposure to solvent that both triggers the immune system and generates Abs that appropriately recognize gp41.
Shi2010
(structure)
-
Z13e1: This review discusses current understanding of Env neutralization by antibodies in relation to epitope exposure and how this insight might benefit vaccine design strategies. This MAb is in the list of current MAbs with notable cross-neutralizing activity.
Pantophlet2010
(neutralization, variant cross-reactivity, review)
-
Z13e1: The two distinct and conflicting models of C-terminal tail (CTT) topology for HIV-1 gp41 were tested by characterizing the accessibility of KE (Kennedy epitope) sequences of gp41 to Ab binding on the surface of Env-expressing cells and intact mature virions. Z13e1 binds effectively to KE in the context of intact virions.
Steckbeck2010
(binding affinity)
-
Z13e1: This review discusses recent rational structure-based approaches in HIV vaccine design that helped in understanding the link between Env antigenicity and immunogenicity. This MAb was mentioned in the context of immunogens based on the epitopes recognized by bNAbs. Z13e1 binds to a conserved tryptophan rich region on gp41 referred to as the membrane-proximal external region (MPER) that has attracted considerable interest as a vaccine target. The crystal structures of Z13e1 bound to its cognate peptides reveal that Z13e1 binds to an elbow in the MPER.
Walker2010a
(review)
-
Z13e1: Z13e1 was shown to capture virion particles completely devoid of HIV-1 Env. Virus capture assay was modified with added incubation of virions and MAbs in solution followed by removal of unbound MAbs, which nearly eliminated the Env-independent binding by this Ab. This modification also allowed for relative affinity of Z13e1 for virions to be quantified. There was an overall reduction in the efficiency of capture of molecular clones (MC) relative to pseudotyped virions by Z13e1. In addition, nontrimeric Envs from JR-CSF MC virus were more efficiently captured by Z13e1 than trimeric JR-FL. It is suggested that the capture of virions by Z13e1 is mostly mediated by nonfunctional Env. It was also shown that soluble Env and MPER peptides can associate with Env-deficient particles and mediate Z13e1-specific virion capture.
Leaman2010
(assay or method development, binding affinity)
-
Z13e1: MPER peptide analogs with charged helical C-terminal Api or Aib tails displayed enhanced binding to 4E10 and Z13e1 MAbs. When replacement of Phe673 with residues Phe(2-F)-OH or Phe(β-OH)-OH was combined with the helical Api tail, the peptide analogs were found to bind 4E10 with high affinity.
Ingale2010
(binding affinity)
-
Z13e1: Crystal structure of the extracellular domain of gp41 has been solved including fusion peptide proximal region (FPPR) heptad repeat 1 and MPER to examine their influence on gp41 post fusion conformation. Their presence increased the melting temperature of gp41 complex greatly compared to the core structure of gp41. Comparison of the solved crystal structure with the MPER conformation in complex with Z13e1 suggests that Z13e blocks the refolding process of gp41 at early steps.
Buzon2010
(antibody binding site, structure)
-
Z13e1: A set of Env variants with deletions in V1/V2 was constructed. Replication competent Env variants with V1/V2 deletions were obtained using virus evolution of V1/V2 deleted variants. Sensitivity of the evolved ΔV1V2 viruses was evaluated to study accessibility of their neutralization epitopes. Z13e1 bound more efficiently to all uncleaved ΔV1V2 variant trimers compared to the full-length trimer, although the differences were minor.
Bontjer2010
(binding affinity)
-
Z13e1: Prefusion (gp140), prehairpin intermediate (gp41-inter) and postfusion (gp41-post) constructs were developed to define conformational states recognized by non-neutralizing cluster II Abs. gp41-inter was re-constructed replacing the six helix bundle with GCN4. Z13e1 bound to, and showed the same kinetic profile, for both gp41-inter and GCN4-gp41-inter constructs, suggesting identical MPER conformation of the two constructs. Z13e1 dissociated from gp41 much more rapidly than 2F5 and 4E10.
Frey2010
(kinetics, binding affinity, structure)
-
Z13e1: EPR and NMR were used to define Z13e1-induced MPER conformational changes. Unlike for 2F5 and 4E10 Abs, no large conformational changes of the MPER were observed upon binding of Z13e1. It is suggested that the initial interaction of Z13e1 with residues N671 and D674 establishes close backbone and side-chain contacts with a large number of MPER residues. In this way, Z13e1 achieves tighter binding and freezes any MPER hinge mobility, permitting only limited conformational changes.
Song2009
(antibody binding site)
-
Z13e1: Crystal structure of Z13e1 in complex with a 12-residue peptide corresponding to the core epitope was determined. The bound peptide adopted an S-shaped conformation composed of two perpendicular helical turns. Z13e1 was shown to bind in the elbow region of MPER, using all three heavy chain CDR loops, with the greatest contribution from H2, followed by H3 and H1. This structure is expected to interact with only a single hydrophobic surface, which could be the viral membrane in the pre-fusion conformation. Asn671 and Asp674 of the Ab epitope were shown to be critical for Z13e1 neutralization. Dependence of the MAb on the Asp674 is due to specific interaction of this residue with a His on the Ab. The structure analyses suggest that Z13e1 binding to its epitope differs from that of 4E10, in both binding orientation of the Ab and the MPER conformations, explaining their neutralization differences.
Pejchal2009
(antibody binding site, neutralization, structure)
-
Z13e1: Three plasmas with broadly cross-neutralizing activities and high titers of MPER Abs were identified among 156 chronically infected patients. JR-FL virus was better neutralized by these MPER abs than by 2F5, 4E10 and Z13e1 in one of the plasmas, while the MPER Abs in another plasma had similar activity to Z13e1. Similarly to Z13e1, the MPER mAbs were dependent on tryptophan at position 670, but the epitopes of these mAbs did not correspond to the Z13e1 epitope on MPER.
Gray2009a
(neutralization)
-
Z13e1: This review summarizes Z13e1 Ab epitope, properties and neutralization activity.
Kramer2007
(review)
-
Z13e1: The MPER region was shown to have an L-shaped structure, with the conserved C-terminal residues immersed in the membrane and the variable N-terminal residues exposed to the aqueous phase. The specific binding of Z13e1 to the MPER was comparable to that of 4E10, with little or no binding to the membrane alone. It is suggested that Z13e1, like 4E10, extracts its epitope from the viral membrane, and that the key requirement for neutralization is induction of structural rearrangement of the MPER hinge by the Ab. It is also suggested that exposure of the membrane-embedded residues of the MPER region to the immune system in their native L-shaped form may elicit neutralizing Abs.
Sun2008
(antibody binding site)
-
Z13e1: 24 broadly neutralizing plasmas from HIV-1 subtype B and C infected individuals were investigated using a series of mapping methods to identify viral epitopes targeted by NAbs. Three different assays were used to analyze gp41-directed neutralizing activity. MAb Z13e1 was shown to neutralize fourfold more potently in the post-CD4/CCR5 assay compared to the standard assay. Weak post-CD4/CCR5 neutralization was detected in five subtype B and two subtype C plasmas. Z13e1 was shown to neutralize two of the MPER-engrafted mutant viruses, but the subtype B plasmas did not exactly recapitulate this activity except in two cases, where the activity of the plasmas against a mutant suggested presence of Z13e1-like Abs. Neutralization of four subtype B plasmas was substantially inhibited by a Z13e1 peptide, suggesting presence of Z13e1-like Abs.
Binley2008
(neutralization, subtype comparisons)
-
Z13e1: In addition to gp120-gp41 trimers, HIV-1 particles were shown to bear nonfunctional gp120-gp41 monomers and gp120-depleted gp41 stumps on their surface. Z13e1 effectively neutralized wildype virus particles. Z13e1 was found to bind to both nonfunctional monomers, gp120-gp41 trimers and to gp41 stumps. Binding of Z13e1 to trimers correlated with its neutralization of wildtype virus particles. Although Z13e1 bound to monomers tightly, it was unable to capture wildtype virus particles efficiently. Z13e1, a high-affinity mutant of the parent Z13, was selected by phage display (referenced to unpublished data).
Moore2006
(antibody binding site, neutralization, binding affinity)
-
Z13e1: Z13e1, a high affinity variant of Fab Z13, was identified through targeted mutagenesis and affinity selection against gp41 and an MPER peptide. Z13e1 showed 100-fold improvement in binding affinity for MPER antigens over Z13, and improved neutralization potency against sensitive HIV-1. Alanine scanning revealed that N671 and D674 residues are crucial for peptide recognition and neutralization of HIV-1 by this Fab. Z13e1 was shown to bind with high affinity to an epitope overlapping those of 2F5 and 4E10 with the minimal epitope WASLWNWFDITN, indicating that the limited neutralization potency results from the limited access to the epitope within the envelope trimer.
Nelson2007
(antibody binding site, neutralization, binding affinity)
References
Showing 33 of
33 references.
Isolation Paper
Nelson2007
Josh D. Nelson, Florence M. Brunel, Richard Jensen, Emma T. Crooks, Rosa M. F. Cardoso, Meng Wang, Ann Hessell, Ian A. Wilson, James M. Binley, Philip E. Dawson, Dennis R. Burton, and Michael B. Zwick. An Affinity-Enhanced Neutralizing Antibody against the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 gp41 Recognizes an Epitope between Those of 2F5 and 4E10. J. Virol., 81(8):4033-4043, Apr 2007. PubMed ID: 17287272.
Show all entries for this paper.
Binley2008
James M. Binley, Elizabeth A. Lybarger, Emma T. Crooks, Michael S. Seaman, Elin Gray, Katie L. Davis, Julie M. Decker, Diane Wycuff, Linda Harris, Natalie Hawkins, Blake Wood, Cory Nathe, Douglas Richman, Georgia D. Tomaras, Frederic Bibollet-Ruche, James E. Robinson, Lynn Morris, George M. Shaw, David C. Montefiori, and John R. Mascola. Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C. J. Virol., 82(23):11651-11668, Dec 2008. PubMed ID: 18815292.
Show all entries for this paper.
Bontjer2010
Ilja Bontjer, Mark Melchers, Dirk Eggink, Kathryn David, John P. Moore, Ben Berkhout, and Rogier W. Sanders. Stabilized HIV-1 Envelope Glycoprotein Trimers Lacking the V1V2 Domain, Obtained by Virus Evolution. J. Biol. Chem, 285(47):36456-36470, 19 Nov 2010. PubMed ID: 20826824.
Show all entries for this paper.
Bricault2019
Christine A. Bricault, Karina Yusim, Michael S. Seaman, Hyejin Yoon, James Theiler, Elena E. Giorgi, Kshitij Wagh, Maxwell Theiler, Peter Hraber, Jennifer P. Macke, Edward F. Kreider, Gerald H. Learn, Beatrice H. Hahn, Johannes F. Scheid, James M. Kovacs, Jennifer L. Shields, Christy L. Lavine, Fadi Ghantous, Michael Rist, Madeleine G. Bayne, George H. Neubauer, Katherine McMahan, Hanqin Peng, Coraline Chéneau, Jennifer J. Jones, Jie Zeng, Christina Ochsenbauer, Joseph P. Nkolola, Kathryn E. Stephenson, Bing Chen, S. Gnanakaran, Mattia Bonsignori, LaTonya D. Williams, Barton F. Haynes, Nicole Doria-Rose, John R. Mascola, David C. Montefiori, Dan H. Barouch, and Bette Korber. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe, 25(1):59-72.e8, 9 Jan 2019. PubMed ID: 30629920.
Show all entries for this paper.
Buzon2010
Victor Buzon, Ganesh Natrajan, David Schibli, Felix Campelo, Michael M. Kozlov, and Winfried Weissenhorn. Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions. PLoS Pathog, 6(5):e1000880, May 2010. PubMed ID: 20463810.
Show all entries for this paper.
Frey2010
Gary Frey, Jia Chen, Sophia Rits-Volloch, Michael M. Freeman, Susan Zolla-Pazner, and Bing Chen. Distinct Conformational States of HIV-1 gp41 Are Recognized by Neutralizing and Non-Neutralizing Antibodies. Nat. Struct. Mol. Biol., 17(12):1486-1491, Dec 2010. PubMed ID: 21076402.
Show all entries for this paper.
Gach2014
Johannes S. Gach, Chad J. Achenbach, Veronika Chromikova, Baiba Berzins, Nina Lambert, Gary Landucci, Donald N. Forthal, Christine Katlama, Barbara H. Jung, and Robert L. Murphy. HIV-1 Specific Antibody Titers and Neutralization among Chronically Infected Patients on Long-Term Suppressive Antiretroviral Therapy (ART): A Cross-Sectional Study. PLoS One, 9(1):e85371, 2014. PubMed ID: 24454852.
Show all entries for this paper.
Gray2009a
Elin S. Gray, Maphuti C. Madiga, Penny L. Moore, Koleka Mlisana, Salim S. Abdool Karim, James M. Binley, George M. Shaw, John R. Mascola, and Lynn Morris. Broad Neutralization of Human Immunodeficiency Virus Type 1 Mediated by Plasma Antibodies against the gp41 Membrane Proximal External Region. J. Virol., 83(21):11265-11274, Nov 2009. PubMed ID: 19692477.
Show all entries for this paper.
Habte2015
Habtom H. Habte, Saikat Banerjee, Heliang Shi, Yali Qin, and Michael W. Cho. Immunogenic Properties of a Trimeric gp41-Based Immunogen Containing an Exposed Membrane-Proximal External Region. Virology, 486:187-197, Dec 2015. PubMed ID: 26454663.
Show all entries for this paper.
Ingale2010
Sampat Ingale, Johannes S. Gach, Michael B. Zwick, and Philip E. Dawson. Synthesis and Analysis of the Membrane Proximal External Region Epitopes of HIV-1. J. Pept. Sci., 16(12):716-722, Dec 2010. PubMed ID: 21104968.
Show all entries for this paper.
Joyner2011
Amanda S. Joyner, Jordan R. Willis, James E.. Crowe, Jr., and Christopher Aiken. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles. PLoS Pathog., 7(9):e1002234, Sep 2011. PubMed ID: 21931551.
Show all entries for this paper.
Kramer2007
Victor G. Kramer, Nagadenahalli B. Siddappa, and Ruth M. Ruprecht. Passive Immunization as Tool to Identify Protective HIV-1 Env Epitopes. Curr. HIV Res., 5(6):642-55, Nov 2007. PubMed ID: 18045119.
Show all entries for this paper.
Krebs2019
Shelly J. Krebs, Young D. Kwon, Chaim A. Schramm, William H. Law, Gina Donofrio, Kenneth H. Zhou, Syna Gift, Vincent Dussupt, Ivelin S. Georgiev, Sebastian Schätzle, Jonathan R. McDaniel, Yen-Ting Lai, Mallika Sastry, Baoshan Zhang, Marissa C. Jarosinski, Amy Ransier, Agnes L. Chenine, Mangaiarkarasi Asokan, Robert T. Bailer, Meera Bose, Alberto Cagigi, Evan M. Cale, Gwo-Yu Chuang, Samuel Darko, Jefferson I. Driscoll, Aliaksandr Druz, Jason Gorman, Farida Laboune, Mark K. Louder, Krisha McKee, Letzibeth Mendez, M. Anthony Moody, Anne Marie O'Sullivan, Christopher Owen, Dongjun Peng, Reda Rawi, Eric Sanders-Buell, Chen-Hsiang Shen, Andrea R. Shiakolas, Tyler Stephens, Yaroslav Tsybovsky, Courtney Tucker, Raffaello Verardi, Keyun Wang, Jing Zhou, Tongqing Zhou, George Georgiou, S Munir Alam, Barton F. Haynes, Morgane Rolland, Gary R. Matyas, Victoria R. Polonis, Adrian B. McDermott, Daniel C. Douek, Lawrence Shapiro, Sodsai Tovanabutra, Nelson L. Michael, John R. Mascola, Merlin L. Robb, Peter D. Kwong, and Nicole A. Doria-Rose. Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 50(3):677-691.e13, 19 Mar 2019. PubMed ID: 30876875.
Show all entries for this paper.
Kwong2011
Peter D. Kwong, John R. Mascola, and Gary J. Nabel. Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1. Cold Spring Harb. Perspect. Med., 1(1):a007278, Sep 2011. PubMed ID: 22229123.
Show all entries for this paper.
Lai2011
Rachel P. J. Lai, Jin Yan, Jonathan Heeney, Myra O. McClure, Heinrich Göttlinger, Jeremy Luban, and Massimo Pizzato. Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-Proximal External Region of TMgp41. PLoS Pathog, 7(12):e1002442, Dec 2011. PubMed ID: 22194689.
Show all entries for this paper.
Leaman2010
Daniel P. Leaman, Heather Kinkead, and Michael B. Zwick. In-Solution Virus Capture Assay Helps Deconstruct Heterogeneous Antibody Recognition of Human Immunodeficiency Virus Type 1. J. Virol., 84(7):3382-3395, Apr 2010. PubMed ID: 20089658.
Show all entries for this paper.
Montero2012
Marinieve Montero, Naveed Gulzar, Kristina-Ana Klaric, Jason E. Donald, Christa Lepik, Sampson Wu, Sue Tsai, Jean-Philippe Julien, Ann J. Hessell, Shixia Wang, Shan Lu, Dennis R. Burton, Emil F. Pai, William F. DeGrado, and Jamie K. Scott. Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane. J. Virol., 86(6):2930-2941, Mar 2012. PubMed ID: 22238313.
Show all entries for this paper.
Moore2006
Penny L. Moore, Emma T. Crooks, Lauren Porter, Ping Zhu, Charmagne S. Cayanan, Henry Grise, Paul Corcoran, Michael B. Zwick, Michael Franti, Lynn Morris, Kenneth H. Roux, Dennis R. Burton, and James M. Binley. Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. J. Virol., 80(5):2515-2528, Mar 2006. PubMed ID: 16474158.
Show all entries for this paper.
Morris2011
Lynn Morris, Xi Chen, Munir Alam, Georgia Tomaras, Ruijun Zhang, Dawn J. Marshall, Bing Chen, Robert Parks, Andrew Foulger, Frederick Jaeger, Michele Donathan, Mira Bilska, Elin S. Gray, Salim S. Abdool Karim, Thomas B. Kepler, John Whitesides, David Montefiori, M. Anthony Moody, Hua-Xin Liao, and Barton F. Haynes. Isolation of a Human Anti-HIV gp41 Membrane Proximal Region Neutralizing Antibody by Antigen-Specific Single B Cell Sorting. PLoS One, 6(9):e23532, 2011. PubMed ID: 21980336.
Show all entries for this paper.
Pantophlet2010
Ralph Pantophlet. Antibody Epitope Exposure and Neutralization of HIV-1. Curr. Pharm. Des., 16(33):3729-3743, 2010. PubMed ID: 21128886.
Show all entries for this paper.
Pejchal2009
Robert Pejchal, Johannes S. Gach, Florence M. Brunel, Rosa M. Cardoso, Robyn L. Stanfield, Philip E. Dawson, Dennis R. Burton, Michael B. Zwick, and Ian A. Wilson. A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies. J. Virol., 83(17):8451-8462, Sep 2009. PubMed ID: 19515770.
Show all entries for this paper.
Prigent2018
Julie Prigent, Annaëlle Jarossay, Cyril Planchais, Caroline Eden, Jérémy Dufloo, Ayrin Kök, Valérie Lorin, Oxana Vratskikh, Thérèse Couderc, Timothée Bruel, Olivier Schwartz, Michael S. Seaman, Ohlenschläger, Jordan D. Dimitrov, and Hugo Mouquet. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Rep., 23(9):2568-2581, 29 May 2018. PubMed ID: 29847789.
Show all entries for this paper.
Rathinakumar2012
Ramesh Rathinakumar, Moumita Dutta, Ping Zhu, Welkin E. Johnson, and Kenneth H. Roux. Binding of Anti-Membrane-Proximal gp41 Monoclonal Antibodies to CD4-Liganded and -Unliganded Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Virions. J. Virol., 86(3):1820-1831, Feb 2012. PubMed ID: 22090143.
Show all entries for this paper.
Shi2010
Wuxian Shi, Jen Bohon, Dong P. Han, Habtom Habte, Yali Qin, Michael W. Cho, and Mark R. Chance. Structural Characterization of HIV gp41 with the Membrane-Proximal External Region. J. Biol. Chem., 285(31):24290-24298, 30 Jul 2010. PubMed ID: 20525690.
Show all entries for this paper.
Song2009
Likai Song, Zhen-Yu J. Sun, Kate E. Coleman, Michael B. Zwick, Johannes S. Gach, Jia-huai Wang, Ellis L. Reinherz, Gerhard Wagner, and Mikyung Kim. Broadly Neutralizing Anti-HIV-1 Antibodies Disrupt a Hinge-Related Function of gp41 at the Membrane Interface. Proc. Natl. Acad. Sci. U.S.A., 106(22):9057-9062, 2 Jun 2009. PubMed ID: 19458040.
Show all entries for this paper.
Stanfield2011
Robyn L. Stanfield, Jean-Philippe Julien, Robert Pejchal, Johannes S. Gach, Michael B. Zwick, and Ian A. Wilson. Structure-Based Design of a Protein Immunogen That Displays an HIV-1 gp41 Neutralizing Epitope. J. Mol. Biol., 414(3):460-476, 2 Dec 2011. PubMed ID: 22033480.
Show all entries for this paper.
Steckbeck2010
Jonathan D. Steckbeck, Chengqun Sun, Timothy J. Sturgeon, and Ronald C. Montelaro. Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes. PLoS One, 5(12):e15261, 2010. PubMed ID: 21151874.
Show all entries for this paper.
Sun2008
Zhen-Yu J. Sun, Kyoung Joon Oh, Mikyung Kim, Jessica Yu, Vladimir Brusic, Likai Song, Zhisong Qiao, Jia-huai Wang, Gerhard Wagner, and Ellis L. Reinherz. HIV-1 Broadly Neutralizing Antibody Extracts Its Epitope from a Kinked gp41 Ectodomain Region on the Viral Membrane. Immunity, 28(1):52-63, Jan 2008. PubMed ID: 18191596.
Show all entries for this paper.
Tomaras2011
Georgia D. Tomaras, James M. Binley, Elin S. Gray, Emma T. Crooks, Keiko Osawa, Penny L. Moore, Nancy Tumba, Tommy Tong, Xiaoying Shen, Nicole L. Yates, Julie Decker, Constantinos Kurt Wibmer, Feng Gao, S. Munir Alam, Philippa Easterbrook, Salim Abdool Karim, Gift Kamanga, John A. Crump, Myron Cohen, George M. Shaw, John R. Mascola, Barton F. Haynes, David C. Montefiori, and Lynn Morris. Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals. J. Virol., 85(21):11502-11519, Nov 2011. PubMed ID: 21849452.
Show all entries for this paper.
Tong2012
Tommy Tong, Ema T. Crooks, Keiko Osawa, and James M. Binley. HIV-1 Virus-Like Particles Bearing Pure Env Trimers Expose Neutralizing Epitopes but Occlude Nonneutralizing Epitopes. J. Virol., 86(7):3574-3587, Apr 2012. PubMed ID: 22301141.
Show all entries for this paper.
Walker2010a
Laura M. Walker and Dennis R. Burton. Rational Antibody-Based HIV-1 Vaccine Design: Current Approaches and Future Directions. Curr. Opin. Immunol., 22(3):358-366, Jun 2010. PubMed ID: 20299194.
Show all entries for this paper.
Beauparlant2017
David Beauparlant, Peter Rusert, Carsten Magnus, Claus Kadelka, Jacqueline Weber, Therese Uhr, Osvaldo Zagordi, Corinna Oberle, Maria J. Duenas-Decamp, Paul R. Clapham, Karin J. Metzner, Huldrych F. Gunthard, and Alexandra Trkola. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog, 13(3):e1006255 doi, Mar 2017. PubMed ID: 28264054
Show all entries for this paper.
Joshi2020
Vinita R. Joshi, Ruchi M. Newman, Melissa L. Pack, Karen A. Power, James B. Munro, Ken Okawa, Navid Madani, Joseph G. Sodroski, Aaron G. Schmidt, and Todd M. Allen. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog, 16(5):e1008577 doi, May 2020. PubMed ID: 32392227
Show all entries for this paper.