Found 1 matching record:
Displaying record number 633
Download this epitope
record as JSON.
MAb ID |
b12 (Fab b12, MAb IgG1b12, IgG1-b12, IgG1 b12, IgGB12, b4/12, Ib12, 1b12) |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
gp120 |
Research Contact |
D. Burton, Scripps Research Institute, La Jolla, CA, also J. Geltowsky and J. Pyati, R. W. Johnson Pharmaceutical Resear |
Epitope |
(Discontinuous epitope)
|
Subtype |
B |
Ab Type |
gp120 CD4BS |
Neutralizing |
L P (tier 2) View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human(IgG1κ) |
Patient |
Donor b |
Immunogen |
HIV-1 infection |
Keywords |
ADCC, antibody binding site, antibody interactions, assay or method development, neutralization, review, SIV, subtype comparisons |
Notes
Showing 12 matching of
575 total notes.
-
b12: The study compared well-characterized nAbs (2G12, b12, VRC01, 10E8, 17b) with 4 mAbs derived from a Japanese patient (4E9C, 49G2, 916B2, 917B11), in their neutralization and ADCC activity against viruses of subtypes B and CRF01. CRF01 viruses were less susceptible to neutralization by 2G12 and b12, while VRC01 was highly effective in neutralizing CRF01 viruses. 49G2 showed better neutralization breadth against CRF01 than against B viruses. CRF01_AE viruses from Japan also showed a slightly higher susceptibility to anti-CD4i Ab 4E9C than the subtype B viruses, and to CRF01_AE viruses from Vietnam. Neutralization breadth of other anti-CD4i Abs 17b, 916B2 and 917B11 was low against both subtype B and CRF01_AE viruses. Anti-CD4bs Ab 49G2, which neutralized only 22% of the viruses, showed the broadest coverage of Fc-mediated signaling activity against the same panel of Env clones among the Abs tested. The CRF01_AE viruses from Japan were more susceptible to 49G2-mediated neutralization than the CRF01_AE viruses from Vietnam, but Fc-mediated signaling activity of 49G2was broader and stronger in the CRF01_AE viruses from Vietnam than the CRF01_AE viruses from Japan.
Thida2019
(ADCC, neutralization, subtype comparisons)
-
b12: Isolation of human mAb, E10, from an HIV-1-infected patient sample by single B cell sorting and single cell PCR has been reported. E10 showed binding to gp140 trimer and linear peptides derived from gp41 membrane proximal external region (MPER). E10 epitope (QEKNEQELLEL) overlapped with mAb 2F5 epitope. E10 showed low neutralization activity and narrow spectrum of neutralization compared to b12, but it mediated higher ADCC activity than b12 at low antibody concentration. Fine mapping of E10 epitope may potentiate MPER-based subunit vaccine development.
Yang2018
(ADCC, antibody binding site)
-
IgG1b12: The results confirm that Nef and Vpu protect HIV-1-infected cells from ADCC, but also show that not all classes of antibody can mediate ADCC. Anti-cluster-A antibodies are able to mediate potent ADCC responses, whereas anti-coreceptor binding site antibodies are not. Position 69 in gp120 is important for antibody-mediated cellular toxicity by anti-cluster-A antibodies. The angle of approach of a given class of antibodies could impact its capacity to mediate ADCC. VRC01 and b12 were selected as Abs that recognize the CD4 binding site.
Ding2015
(ADCC)
-
IgG1b12: This study assessed the ADCC activity of antibodies of varied binding types, including CD4bs (b6, b12, VRC01, PGV04, 3BNC117), V2 (PG9, PG16), V3 (PGT126, PGT121, 10-1074), oligomannose (2G12), MPER (2F5, 4E10, 10E8), CD4i (17b, X5), C1/C5 (A32, C11), cluster I (240D, F240), and cluster II (98-6, 126-7). ADCC activity was correlated with binding to Env on the surfaces of virus-infected cells. ADCC was correlated with neutralization, but not always for lab-adapted viruses such as HIV-1 NLA-3.
vonBredow2016
(ADCC)
-
b12: A highly conserved mechanism of exposure of ADCC epitopes on Env is reported, showing that binding of Env and CD4 within the same HIV-1 infected cell effectively exposes these epitopes. The mechanism might explain the evolutionary advantage of downregulation of cell surface CD4v by the Vpu and Nef proteins. b12 was used in CD4 coexpression and competitive binding assay.
Veillette2014
(ADCC)
-
b12: A panel of NAbs and non-neutralizing Abs (NoNAbs) displaying the highest Fc γR-mediated inhibitory activity and significant ADCC were selected and formulated in a microbicidal gel and tested for their antiviral activity against SHIVSF162P3 vaginal challenge in non-human primates. Combination of 2G12, 2F5 and 4E10 fully prevented vaginal transmission. Two NoNAbs 246-D and 4B3 had no impact on viral acquisition, but reduced plasma viral load. Both b12 and b12 LALA mutant, which can't bind with the Fc receptor were used in the screening process. b12 LALA didn't exhibit any ADCC activity confirming the Fc gammaR dependency of ADCC assay.
Moog2014
(ADCC, SIV)
-
b12: The complexity of the epitopes recognized by ADCC responses in HIV-1 infected individuals and candidate vaccine recipients is discussed in this review. b12 is discussed as the CD4bs-targeting, neutralizing anti-gp120 mAb exhibiting ADCC activity and having a discontinuous epitope. b12 LALA variant and other non-fucosilated variants showed less in vivo protection despite higher ADCC. Both VRC01 and b12 recognize the outer domain of gp120. b12 recognizes by using its Ab heavy chain, where as VRC01 uses both heavy and light chains. This difference is crucial for differences in their neutralization breadth.
Pollara2013
(ADCC, review)
-
b12: ADCC mediated by CD4i mAbs (or anti-CD4i-epitope mAbs) was studied using a panel of 41 novel mAbs. Three epitope clusters were classified, depending on cross-blocking in ELISA by different mAbs: Cluster A - in the gp120 face, cross-blocking by mAbs A32 and/or C11; Cluster B - in the region proximal to CoRBS (co-receptor binding site) involving V1V2 domain, cross-blocking by E51-M9; Cluster C - CoRBS, cross-blocking by 17b and/or 19e. The ADCC half-maximal effective concentrations of the Cluster A and B mAbs were generally 0.5-1 log lower than those of the Cluster C mAbs, and none of the Cluster A or B mAbs could neutralize HIV-1. Cluster A's A32- and C11-blockable mAbs were suggested to recognize conformational epitopes within the inner domain of gp120 that involve the C1 region. Neutralization potency and breadth were also assessed for these mAbs. No correlation was found between ADCC and neutralization Abs' action or functional responses. b12 was used as a positive control in the assays.
Guan2013
(ADCC, antibody interactions)
-
b12: The sera of 20 HIV-1 patients were screened for ADCC in a novel assay measuring granzyme B (GrB) and T cell elimination and reported that complex sera mediated greater levels of ADCC than anti-HIV mAbs. The data suggested that total amount of IgG bound is an important determinant of robust ADCC which improves the vaccine potency. b12 was used as a anti-CD4 binding site Ab to study effects of Ab specificity and affinity on ADCC against HIV-1 infected targets.
Smalls-Mantey2012
(ADCC, assay or method development)
-
b12: A nonfucosylated variant of b12 (NFb12) was developed to investigate antibody-dependent cellular cytotoxicity (ADCC) as a contributor to FcγR-associated protection. Compared to b12, NFb12 has enhanced FcγRIIIa-Mediated antiviral activity in vitro but did not improve protection against mucosal SHIV challenge in macaques.
Moldt2012
(ADCC)
-
b12: This review discusses recent research done to improve the production, quality, and cross-reactivity of binding Abs, neutralizing Abs, monoclonal Abs with broad neutralizing activity, antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI), and catalytic Abs. Studies focusing on several aspects of BNAb roles in vaccine development, and studies done to better understand the broad binding capacity of BNAbs are reviewed.
Baum2010
(ADCC, neutralization, review)
-
IgG1b12: Called IgG1 b12. IgG1b12 induces strong ADCC and CDC cytoxicity of HIV-1 infected cells. A panel of mutants in the Fc region of IgG1b12 was generated. K322A reduced ADCC binding of FcγR and abolished complement-dependent cytotoxicity (CDC) and C1q binding. L234A plus L235 in the lower hinge region of the IgG1 heavy chain abolished both FcγR and C1q binding and ADCC and CDC. These mutants did not impact IgG1b12's ability to neutralize virus.
Hezareh2001
(ADCC)
References
Showing 12 matching of
592 total references.
Baum2010
Linda L. Baum. Role of Humoral Immunity in Host Defense Against HIV. Curr HIV/AIDS Rep, 7(1):11-18, Feb 2010. PubMed ID: 20425053.
Show all entries for this paper.
Ding2015
Shilei Ding, Maxime Veillette, Mathieu Coutu, Jérémie Prévost, Louise Scharf, Pamela J. Bjorkman, Guido Ferrari, James E. Robinson, Christina Stürzel, Beatrice H. Hahn, Daniel Sauter, Frank Kirchhoff, George K. Lewis, Marzena Pazgier, and Andrés Finzi. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. J. Virol., 90(4):2127-2134, Feb 2016. PubMed ID: 26637462.
Show all entries for this paper.
Guan2013
Yongjun Guan, Marzena Pazgier, Mohammad M. Sajadi, Roberta Kamin-Lewis, Salma Al-Darmarki, Robin Flinko, Elena Lovo, Xueji Wu, James E. Robinson, Michael S. Seaman, Timothy R. Fouts, Robert C. Gallo, Anthony L. DeVico, and George K. Lewis. Diverse Specificity and Effector Function Among Human Antibodies to HIV-1 Envelope Glycoprotein Epitopes Exposed by CD4 Binding. Proc. Natl. Acad. Sci. U.S.A., 110(1):E69-E78, 2 Jan 2013. PubMed ID: 23237851.
Show all entries for this paper.
Hezareh2001
Marjan Hezareh, Ann J. Hessell, Richard C. Jensen, Jan G. J. van de Winkel, and Paul W. H. I. Parren. Effector Function Activities of a Panel of Mutants of a Broadly Neutralizing Antibody against Human Immunodeficiency Virus Type 1. J. Virol., 75(24):12161-12168, Dec 2001. PubMed ID: 11711607.
Show all entries for this paper.
Moldt2012
Brian Moldt, Mami Shibata-Koyama, Eva G. Rakasz, Niccole Schultz, Yutaka Kanda, D. Cameron Dunlop, Samantha L. Finstad, Chenggang Jin, Gary Landucci, Michael D. Alpert, Anne-Sophie Dugast, Paul W. H. I. Parren, Falk Nimmerjahn, David T. Evans, Galit Alter, Donald N. Forthal, Jörn E. Schmitz, Shigeru Iida, Pascal Poignard, David I. Watkins, Ann J. Hessell, and Dennis R. Burton. A Nonfucosylated Variant of the Anti-HIV-1 Monoclonal Antibody b12 Has Enhanced Fc-gamma-RIIIa-Mediated Antiviral Activity In Vitro but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques. J. Virol., 86(11):6189-6196, Jun 2012. PubMed ID: 22457527.
Show all entries for this paper.
Moog2014
C. Moog, N. Dereuddre-Bosquet, J.-L. Teillaud, M. E. Biedma, V. Holl, G. Van Ham, L. Heyndrickx, A. Van Dorsselaer, D. Katinger, B. Vcelar, S. Zolla-Pazner, I. Mangeot, C. Kelly, R. J. Shattock, and R. Le Grand. Protective Effect of Vaginal Application of Neutralizing and Nonneutralizing Inhibitory Antibodies Against Vaginal SHIV Challenge in Macaques. Mucosal Immunol., 7(1):46-56, Jan 2014. PubMed ID: 23591718.
Show all entries for this paper.
Pollara2013
Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Marzena Pazgier, Barton F. Haynes, and Guido Ferrari. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity (ADCC) Responses. Curr. HIV Res., 11(5):378-387, Jul 2013. PubMed ID: 24191939.
Show all entries for this paper.
Smalls-Mantey2012
Adjoa Smalls-Mantey, Nicole Doria-Rose, Rachel Klein, Andy Patamawenu, Stephen A. Migueles, Sung-Youl Ko, Claire W. Hallahan, Hing Wong, Bai Liu, Lijing You, Johannes Scheid, John C. Kappes, Christina Ochsenbauer, Gary J. Nabel, John R. Mascola, and Mark Connors. Antibody-Dependent Cellular Cytotoxicity against Primary HIV-Infected CD4+ T Cells Is Directly Associated with the Magnitude of Surface IgG Binding. J. Virol., 86(16):8672-8680, Aug 2012. PubMed ID: 22674985.
Show all entries for this paper.
Thida2019
Win Thida, Takeo Kuwata, Yosuke Maeda, Tetsu Yamashiro, Giang Van Tran, Kinh Van Nguyen, Masafumi Takiguchi, Hiroyuki Gatanaga, Kazuki Tanaka, and Shuzo Matsushita. The role of conventional antibodies targeting the CD4 binding site and CD4-induced epitopes in the control of HIV-1 CRF01_AE viruses. Biochem Biophys Res Commun, 508(1):46-51 doi, Jan 2019. PubMed ID: 30470571
Show all entries for this paper.
Veillette2014
Maxime Veillette, Anik Désormeaux, Halima Medjahed, Nour-Elhouda Gharsallah, Mathieu Coutu, Joshua Baalwa, Yongjun Guan, George Lewis, Guido Ferrari, Beatrice H. Hahn, Barton F. Haynes, James E. Robinson, Daniel E. Kaufmann, Mattia Bonsignori, Joseph Sodroski, and Andres Finzi. Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity. J. Virol., 88(5):2633-2644, Mar 2014. PubMed ID: 24352444.
Show all entries for this paper.
vonBredow2016
Benjamin von Bredow, Juan F. Arias, Lisa N. Heyer, Brian Moldt, Khoa Le, James E. Robinson, Susan Zolla-Pazner, Dennis R. Burton, and David T. Evans. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. J. Virol., 90(13):6127-6139, 1 Jul 2016. PubMed ID: 27122574.
Show all entries for this paper.
Yang2018
Zheng Yang, Xi Liu, Zehua Sun, Jingjing Li, Weiguo Tan, Weiye Yu, and Meiyun Zhang. Identification of a HIV gp41-Specific Human Monoclonal Antibody with Potent Antibody-Dependent Cellular Cytotoxicity. Front. Immunol., 9:2613, 2018. PubMed ID: 30519238.
Show all entries for this paper.