Found 1 matching record:
Displaying record number 783
Download this epitope
record as JSON.
MAb ID |
246-D (SZ-246.D, 246, 246D) |
HXB2 Location |
gp160(590-597) DNA(7992..8015) |
gp160 Epitope Map
|
Author Location |
gp41(gp41 579-604 HXB2) |
Research Contact |
Susan Zolla-Pazner (Zollas01@mcrcr6.med.nyu), NYU Med Center, NY, NY |
Epitope |
QQLLGIWG
|
Epitope Alignment
|
Subtype |
B |
Ab Type |
gp41 cluster I |
Neutralizing |
no |
Species
(Isotype)
|
human(IgG1κ) |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
ADCC, antibody binding site, antibody generation, antibody interactions, antibody sequence, binding affinity, complement, dendritic cells, enhancing activity, kinetics, neutralization, polyclonal antibodies, review, SIV, structure, subtype comparisons, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity, viral fitness and reversion |
Notes
Showing 40 of
40 notes.
-
246-D: The study identified a primary HIV-1 Env variant from patient 653116 that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. In the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. This phenotype was mapped to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. The authors provide evidence that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Anti-cluster I monoclonal antibodies (240-D, 246-D, F240, T32) targeting HR1 and the C-C loop of gp41 restored infectivity defects observed with Q563R. Viruses with the Q563R mutation were shown to have increased sensitivity to MPER mAbs (10E8, 7H6, 2F5, Z13e1, 4E10).
Joshi2020
(viral fitness and reversion)
-
246D: The authors selected an optimal panel of diverse HIV-1 envelope glycoproteins to represent the antigenic diversity of HIV globally in order to be used as antigen candidates. The selection was based on genetic and geographic diversity, and experimentally and computationally evaluated humoral responses. The eligibility of the envelopes as vaccine candidates was evaluated against a panel of antibodies for breadth, affinity, binding and durability of vaccine-elicited responses. The antigen panel was capable of detecting the spectrum of V2-specific antibodies that target epitopes from the V2 strand C (V2p), the integrin binding motif in V2 (V2i), and the quaternary epitope at the apex of the trimer (V2q).
Yates2018
(vaccine antigen design, vaccine-induced immune responses, binding affinity)
-
246-D: Nanodiscs (discoidal lipid bilayer particles of 10-17 nm surrounded by membrane scaffold protein) were used to incorporate Env complexes for the purpose of vaccine platform generation. The Env-NDs (Env-NDs) were characterized for antigenicity and stability by non-NAbs and NAbs. Most NAb epitopes in gp41 MPER and in the gp120:gp41 interface were well exposed while non-NAb cell surface epitopes were generally masked. Anti-gp41 non-NAb 246-D, binds at a fraction of the binding of 2G12 to Env-ND, and this binding is sensitive to glutaraldehyde treatment .
Witt2017
(vaccine antigen design, binding affinity)
-
246-D: Env from of a highly neutralization-resistant isolate, CH120.6, was shown to be very stable and conformationally-homogeneous. Its gp140 trimer retains many antigenic properties of the intact Env, while its monomeric gp120 exposes more epitopes. Thus trimer organization and stability are important determinants for occluding epitopes and conferring resistance to antibodies. Among a panel of 21 mAbs, CH120.6 was resistant to neutralization by all non-neutralizing and strain-specific mAbs (including 246-D), regardless of the location of their epitopes. It was weakly neutralized by several broadly-neutralizing mAbs (VRC01, NIH45-46, 12A12, PG9, PG16, PGT128, 4E10, and 10E8), and well neutralized by only 2 (PGT145 and 10-1074).
Cai2017
(neutralization)
-
246-D: Two stable homogenous gp140 Env trimer spikes, Clade A 92UG037.8 Env and Clade C C97ZA012 Env, were identified. 293T cells stably transfected with either presented fully functional surface timers, 50% of which were uncleaved. A panel of neutralizing and non-neutralizing Abs were tested for binding to the trimers. Non-neutralizing Cluster I Ab, 246-D did not bind cell surface or neutralize 92UG037.8 HIV-1 isolate though it did bind gp160 minus its C-terminus (gp160ΔCT) weakly, and was able to bind well in the presence of sCD4.
Chen2015
(neutralization, binding affinity)
-
246-D: A panel of NAbs and non-neutralizing Abs (NoNAbs) displaying the highest Fc γR-mediated inhibitory activity and significant ADCC were selected and formulated in a microbicidal gel and tested for their antiviral activity against SHIVSF162P3 vaginal challenge in non-human primates. Combination of 2G12, 2F5 and 4E10 fully prevented vaginal transmission. Two NoNAbs 246-D and 4B3 had no impact on viral acquisition, but reduced plasma viral load.
Moog2014
(ADCC, SIV)
-
246-D: The complexity of the epitopes recognized by ADCC responses in HIV-1 infected individuals and candidate vaccine recipients is discussed in this review. 246D is discussed as the Cluster I region and Principal Immune Domain (PID) targeting non-neutralizing anti-gp41 mAb exhibiting ADCC activity and having a linear epitope.
Pollara2013
(ADCC, review)
-
246-D: The capacity of 246-D to block completely the activity of the anti-HIV peptide T20 was investigated. T20 inhibited the fusion or syncytia formation between co-cultured CHO-WT cells expressing HIV-1 HXB2 envelope glycoprotein on their surface and HeLaT4 cells. 246-D was not able to block the anti-fusion effect of T20.
Vincent2012
(antibody interactions)
-
246-D: A role for enhancing antibodies in early HIV infection was studied in longitudinal samples with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2). Early produced non-neutralizing antibodies enhanced viral infectivity. Complement-mediated antibody-dependent enhancement (C’-ADE) was consistent and dramatic with infection-enhancing levels >350-fold in some cases. C’-ADE activity declined as a neutralizing response to the early virus emerged, but later virus isolates that had escaped the neutralizing response had an increased capacity for enhanced infection by autologous antibodies. MAb 246-D was used for comparison and enhanced infection of the TCLA strain IIIB up to 3.7-fold, comparable to previous reports.
Willey2011
(enhancing activity, polyclonal antibodies)
-
246-D: Prefusion (gp140), prehairpin intermediate (gp41-inter) and postfusion (gp41-post) constructs were developed to define conformational states recognized by non-neutralizing cluster II Abs. gp41-inter was re-constructed replacing the six helix bundle with GCN4. 246-D bound tightly to both gp41-inter and GCN4-gp41-inter constructs, suggesting no structural distortion due to six helix bundle replacement with GCN4.
Frey2010
(binding affinity, structure)
-
246: 246 bound to both SF162 wild type and SF162 mutant, carrying only the monomeric form of the Env protein, virions and transfected cells.
Kimura2009
(binding affinity)
-
246D: 246D recognized trimeric, dimeric and monomeric forms of cross-linked sgp140(-) Env glycoprotein, indicating that the epitope of this MAb is accessible on different oligomeric forms of soluble envelope proteins.
Yuan2009
(antibody binding site)
-
246-D: Although a substantial increase in neutralization potency of MPER-specific Abs 4E10 and 2F5 was observed in cells expressing FcγR I and IIb, no such effect was observed for 246-D.
Perez2009
(neutralization)
-
246-D: The Ig usage for variable heavy chain of this Ab was as follows: IGHV:1-69*01, IGHD:6-19, D-RF:2, IGHJ:4. Non-V3 mAbs preferentially used the VH1-69 gene segment. In contrast to V3 mAbs, these non-V3 mAbs used several VH4 gene segments and the D3-9 gene segment. Similarly to the V3 mAbs, the non-V3 mAbs used the VH3 gene family in a reduced manner.
Gorny2009
(antibody sequence)
-
246-D: Post-attachment enhancement (PAE), which augmented the level of HIV-1 cell infection by 1.4-fold, was not inhibited by 246-D non-neutralizing mAb, but was inhibited by anti-V3 neutralizing mAbs 0.5β and 694/98-D. Unlike the neutralizing Abs, 246-D did not suppress the fluidity of the viral and plasma envelopes. It is suggested that the binding of the neutralizing Abs to the viral surface could affect steric alternations of the viral envelope and restrain the envelope from enhancing its fluidity. Thus, suppression of the fluidity of viral envelope could be one additional mechanism for virus neutralization by anti-V3 neutralizing mAbs.
Harada2008
(antibody interactions, enhancing activity, neutralization)
-
246-D: 246-D reacted with maltose-binding proteins MBP30 and MBP32, containing both HR1 and HR2 domains of gp41, and with MBP37, containing only the HR2 domain, but not with MBP-HR1, containing only the HR1 domain. In addition, 246-D did not react with MBP44/N36, MBP-HR1/T20, MBP-HR1/H44, and MBP-HR1/C23 complexes.
Vincent2008
(antibody binding site)
-
246-D: Molecular mechanism of neutralization by MPER antibodies, 2F5 and 4E10, was studied using preparations of trimeric HIV-1 Env protein in the prefusion, the prehairpin intermediate and postfusion conformations. MAb 246-D was used to analyze antigenic properties of construct 92UG-gp140-Fd, derived from isolate 92UG037.8 and stabilized by a C-terminal foldon tag. 92UG-gp140-Fd trimer binds 246-D. There is also strong binding of 246-D with plasmin cleaved 92UG-gp140-Fd.
Frey2008
(antibody binding site, binding affinity)
-
246D: Point mutations in the highly conserved structural motif LLP-2 within the intracytoplasmic tail of gp41 resulted in conformational alternations of both gp41 and gp120. The alternations did not affect virus CD4 binding, coreceptor binding site exposure, or infectivity of the virus, but did result in decreased binding and neutralization by certain MAbs and human sera. 246D exhibited similar levels of binding to both the LLP-2 mutant and wildtype viruses, indicating that its epitope was not altered by the mutation.
Kalia2005
(antibody binding site, binding affinity)
-
246D: 246D was found to bind to both monomeric and oligomeric gp41. Binding of this Ab to H9/IIIB-infected cells gave a strong signal which was increased by sCD4 pretreatment. Binding to H9/MN-infected cells gave a low signal which increased dramatically with sCD4 pretreatment.
Usami2005
(antibody binding site)
-
246-D: This Ab was shown to inhibit HIV-1 BaL replication in macrophages but not in PHA-stimulated PBMCs. It is suggested that inhibition of HIV replication by this Ab for macrophages and iDCs occurs by an IgG-FcγR-dependent interaction leading to endocytosis and degradation of HIV particles. It is also suggested that this Ab is directed against epitopes distinct from those recognized by NAbs and that it will not impair virus entry into PBMCs but that it could participate in the protection of mucosal HIV transmission by preventing the infection of macrophages and iDCs.
Holl2006
(neutralization, dendritic cells)
-
246-D: Called 246D. The role of serine proteases on HIV infection was explored. Trypsin decreased the binding of most Env MAb tested and diminished cell fusion of H9 cells infected with HIV-1 LAI virus (H9/IIIB) to MAGI cells. In contrast, thrombin increased the binding of MAbs to gp120 epitopes near the CD4 and CCR5 binding sites, and increased cell fusion. Binding of 17b and F105 was decreased by trypsin, but increased by thrombin. gp41 MAbs 246D, 98.6, 50-69, were decreased by trypsin, unaltered by thrombin, while NAb 2F5 binding was increased by thrombin. Thrombin may increase HIV-induced cell fusion in blood by causing a conformational activating shift in gp120.
Ling2004
(antibody binding site)
-
246-D: One of 24 MAbs and Fabs in this database that bind to the highly immunogenic gp41 cluster I region (aa 579 - 604). Only one of these has any neutralizing potential, clone 3.
Gorny2003
(review)
-
246-D: Anti-gp41 MAbs were tested in a cell-cell fusion system to investigate the antigenic changes in gp41 during binding and fusion. Cluster I MAbs 50-69, F240, 240-D,3D6, and 246-D recognize a nonhelical hydrophobic region, positions 598-604, that forms a disulfide loop in the six-helix bundle. Cluster II MAbs 98-6 and 126-6 recognized residues 644-663 of gp41, a portion of the second heptad repeat. These MAbs were found to behave similarly, so 50-69 and 98-6 were used as representatives. Exposure of cluster I and cluster II epitopes required CD4 expression on HIV HXB2 Env expressing HeLa target cells, but not the CXCR4 co-receptor. Binding to CD4 exposed hidden cluster I and II epitopes. The MAbs were found to bind to gp120/gp41 complexes, not to gp41 after shedding of gp120, and were localized to at fusing-cell interfaces. Kinetic and binding results indicate that these MAbs are exposed in transitional structures during the fusion process, possibly the prehairpin intermediate prior to co-receptor binding, although other intermediate structures may be involved. They do not bind once syncytia begin to show extensive cytoplasmic mixing. These MAbs failed to inhibit fusion. The NAb 2F5 has a very different behavior in this study.
Finnegan2002
(antibody binding site, kinetics)
-
246-D: Alanine mutations were introduced into the N- and C-terminal alpha-helices of gp41 to destabilize interhelical packing interactions in order to study their inhibitory effect on viral infectivity. These mutations were shown to inhibit viral replication though affecting the conformational transition to the fusion-active form of gp41, and allow increased inhibition by gp41 peptides. 2F5 sensitivity is increased in the mutated viruses, presumably because 2F5s neutralization activity is focused on the transition to the fusion active state. No other gp41 MAb against tested, including NC-1, 50-69D, 1281, 98-6D, 246-D and F240, neutralized the parental or the fusion-deficient mutated viruses.
Follis2002
(antibody binding site)
-
246-D: NIH AIDS Research and Reference Reagent Program: 1245.
-
246-D: Called 246D -- Truncation of the gp41 cytoplasmic domain of X4, R5, and X4R5 viruses forces a conformation that more closely resembles the CD4 bound state of the external Envelope, enhancing binding of CD4i MAbs 17b and 48d and of CD4BS MAbs F105, b12, and in most cases of glycosylation site dependent MAb 2G12 and the anti-gp41 MAb 246D -- in contrast, binding of the anti-V2 MAb 697D and the anti-V3 MAb 694/98D were not affected -- viruses bearing the truncation were more sensitive to neutralization by MAbs 48d, b12, and 2G12 -- the anti-C5 MAb 1331A was used to track levels of cell surface expression of the mutated proteins.
EdwardsBH2002
(antibody binding site)
-
246-D: Called 246 -- Conformation-dependent anti-V3 loop Abs may be more cross-reactive, so six new V3 MAbs were generated -- the six new MAbs all bind to the tip of the V3 loop and cross-compete with the MAb 447-52D and are conformationally sensitive -- MAbs showed cross-clade binding to native, intact virions and the strength binding was highly correlated with percent neutralization using the ghost cell or PHA blast assay -- five well-characterized MAbs were used as controls: anti-V3 447-52D (anti-V3 MAb for competition and neutralization studies), 654 (anti-CD4BS used as a conformation-sensitive MAb control), 1331A (anti-C5 used as a linear binding site MAb control), and MAb 246 (anti-gp41 MAb that bound to primary isolates of all clades tested, A, B, C, D, F and CRF01 (clade E).
Gorny2002
(variant cross-reactivity, subtype comparisons)
-
246-D: A panel of 12 MAbs was used to identify those that could neutralize the dual-tropic primary isolate HIV-1 89.6 -- six gave significant neutralization at 2 to 10 ug/ml: 2F5, 50-69, IgG1b12, 447-52D, 2G12, and 670-D six did not have neutralizing activity: 654-D, 4.8D, 450-D, 246-D, 98-6, and 1281 -- no synergy, only additive effects were seen for pairwise combinations of MAbs, and antagonism was noted between gp41 MAbs 50-69 and 98-6, as well as 98-6 and 2F5.
Verrier2001
(antibody interactions)
-
246-D: 26 HIV-1 group M isolates (clades A to H) were tested for binding to 47 MAbs, including 5 cluster I anti-gp41 MAbs which showed good cross clade reactivity -- 246-D bound strongly or moderately to all 26 HIV-1 group M clades viruses tested and showed the strongest binding of all anti-Env MAbs tested, including the V3 and C5 region MAbs -- notes core epitope as LLGI -- no neutralizing activity was observed when 246-D was tested with five isolates.
Nyambi2000
(subtype comparisons)
-
246-D: Core epitope aa 591 to 597, a cluster I epitope that does not bind to either a peptide complex that approximates the core of the fusogenic form of gp41 or the individual peptides N51 and C43 that form this structure -- MAbs 181-D and 246-D had similar properties.
Gorny2000a
(antibody binding site)
-
246-D: This antibody, along with murine MAb D61, can be blocked by any of a group of 8 conformational MAbs (M10, D41, D54, T4, T6, T9, T10 and T35).
Earl1997
(antibody interactions)
-
246-D: Four primary isolates showed distinct patterns of sensitivity to neutralization by polyclonal sera or plasma and MAbs -- BZ167 was the only isolate inhibited by all polyclonal sera and plasma tested, and was also neutralized by 8/17 MAbs, in particular anti-V3 loop (419-D, 447-52D, 782-D, and 838-D), anti-CD4bd (559/64-D, 654-D and 830-D and a cluster II of gp41 directed MAb (98-6) -- isolates 92HT593 and 91US056 were neutralized by V3 loop (419-D, and 447-52D)and cluster II gp41 (98-6) MAbs at higher concentrations and 246-D neutralized 91US056 -- US4 was neutralized by some of the polyclonal sera/plasma tested and not at all by MAbs individually or by a cocktail of ten MAbs consisting of 419-D, 447-52D, 782-D, 838-D, 559/64-D, 654-D, 450-D, 670-D, 1281-D and 98-6.
Hioe1997b
(variant cross-reactivity)
-
246-D: Mutations in BH10 gp160, W596Y and T605A, as well as deletions of 605-609 (TTAVP) and 597-609 (GCSGKLICTTAVP), abrogate binding of enhancing MAbs 86, 240D, 50-69, and 246-D -- 5/6 enhancing MAbs identified to date bind to the immunodominant region 579-613.
Mitchell1998
(antibody binding site)
-
246-D: Ab-mediated activation of complement on HIV+ cells is higher than Ab independent activation---what has been termed ''Ab independent'' in fact results in part from IgM in normal human serum that is HIV-cross-reactive.
Saarloos1995
(complement)
-
246-D: Virions complexed to gp41 Ab facilitate presentation of p66 RT epitopes to Th cells.
Manca1995
-
246-D: No neutralizing activity, both ADCC and viral enhancing activity. Epitope numbering is provided as gp160 592-595, but no details are given.
Forthal1995
(ADCC, complement, enhancing activity)
-
246-D: Called SZ-246.D.
Eddleston1993
-
246-D: No neutralizing activity, some enhancing activity.
Robinson1991
(antibody generation, enhancing activity)
-
246-D: Did not mediate deposition of complement component C3 on HIV infected cells unless cells were pre-incubated with sCD4.
Spear1993
(complement)
-
246-D: Fine mapping indicates core is LLGI.
Xu1991
(antibody binding site)
References
Showing 40 of
40 references.
Isolation Paper
Robinson1991
W. E. Robinson, M. K. Gorny, J.-Y. Xu, W. M. Mitchell, and S. Zolla-Pazner. Two Immunodominant Domains of gp41 Bind Antibodies Which Enhance Human Immunodeficiency Virus Type 1 Infection In Vitro. J. Virol., 65:4169-4176, 1991. PubMed ID: 2072448.
Show all entries for this paper.
Cai2017
Yongfei Cai, Selen Karaca-Griffin, Jia Chen, Sai Tian, Nicholas Fredette, Christine E. Linton, Sophia Rits-Volloch, Jianming Lu, Kshitij Wagh, James Theiler, Bette Korber, Michael S. Seaman, Stephen C. Harrison, Andrea Carfi, and Bing Chen. Antigenicity-Defined Conformations of an Extremely Neutralization-Resistant HIV-1 Envelope Spike. Proc. Natl. Acad. Sci. U.S.A., 114(17):4477-4482, 25 Apr 2017. PubMed ID: 28396421.
Show all entries for this paper.
Chen2015
Jia Chen, James M. Kovacs, Hanqin Peng, Sophia Rits-Volloch, Jianming Lu, Donghyun Park, Elise Zablowsky, Michael S. Seaman, and Bing Chen. Effect of the Cytoplasmic Domain on Antigenic Characteristics of HIV-1 Envelope Glycoprotein. Science, 349(6244):191-195, 10 Jul 2015. PubMed ID: 26113642.
Show all entries for this paper.
Earl1997
P. L. Earl, C. C. Broder, R. W. Doms, and B. Moss. Epitope map of human immunodeficiency virus type 1 gp41 derived from 47 monoclonal antibodies produced by immunization with oligomeric envelope protein. J. Virol., 71:2674-84, 1997. PubMed ID: 9060620.
Show all entries for this paper.
Eddleston1993
M. Eddleston, J. C. de la Torre, J.-Y. Xu, N. Dorfman, A. Notkins, S. Zolla-Pazner, and M. B. A. Oldstone. Molecular Mimicry Accompanying HIV-1 Infection: Human Monoclonal Antibodies That Bind to gp41 and to Astrocytes. AIDS Res. Hum. Retroviruses, 10:939-944, 1993. In this paper, three anti-HIV-1 gp41 specific MAbs were found to react with astrocytes: 98-6, 167-7 and 15G1. Reactive astrocytes in the hippocampus were most prominently involved, and the antibodies stained no other cell type in the brain, kidney or liver. All three mapped to a conformationally dependent epitope between aa 644-663. PubMed ID: 7506553.
Show all entries for this paper.
EdwardsBH2002
Bradley H. Edwards, Anju Bansal, Steffanie Sabbaj, Janna Bakari, Mark J. Mulligan, and Paul A. Goepfert. Magnitude of Functional CD8+ T-Cell Responses to the Gag Protein of Human Immunodeficiency Virus Type 1 Correlates Inversely with Viral Load in Plasma. J. Virol., 76(5):2298-2305, Mar 2002. PubMed ID: 11836408.
Show all entries for this paper.
Finnegan2002
Catherine M. Finnegan, Werner Berg, George K. Lewis, and Anthony L. DeVico. Antigenic Properties of the Human Immunodeficiency Virus Transmembrane Glycoprotein during Cell-Cell Fusion. J. Virol., 76(23):12123-12134, Dec 2002. PubMed ID: 12414953.
Show all entries for this paper.
Follis2002
Kathryn E. Follis, Scott J. Larson, Min Lu, and Jack H. Nunberg. Genetic Evidence that Interhelical Packing Interactions in the gp41 Core Are Critical for Transition of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein to the Fusion-Active State. J. Virol., 76(14):7356-7362, Jul 2002. PubMed ID: 12072535.
Show all entries for this paper.
Forthal1995
D. N. Forthal, G. Landucci, M. K. Gorny, S. Zolla-Pazner, and W. E. Robinson, Jr. Functional Activities of 20 Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 11:1095-1099, 1995. A series of tests were performed on 20 human monoclonal antibodies to assess their potential therapeutic utility. Antibodies were tested for potentially harmful complement-mediated antibody enhancing activity (C-ADE), and for potentially beneficial neutralizing activity and antibody dependent cellular cytotoxicity ADCC. PubMed ID: 8554906.
Show all entries for this paper.
Frey2008
Gary Frey, Hanqin Peng, Sophia Rits-Volloch, Marco Morelli, Yifan Cheng, and Bing Chen. A Fusion-Intermediate State of HIV-1 gp41 Targeted by Broadly Neutralizing Antibodies. Proc. Natl. Acad. Sci. U.S.A., 105(10):3739-3744, 11 Mar 2008. PubMed ID: 18322015.
Show all entries for this paper.
Frey2010
Gary Frey, Jia Chen, Sophia Rits-Volloch, Michael M. Freeman, Susan Zolla-Pazner, and Bing Chen. Distinct Conformational States of HIV-1 gp41 Are Recognized by Neutralizing and Non-Neutralizing Antibodies. Nat. Struct. Mol. Biol., 17(12):1486-1491, Dec 2010. PubMed ID: 21076402.
Show all entries for this paper.
Gorny2000a
M. K. Gorny and S. Zolla-Pazner. Recognition by Human Monoclonal Antibodies of Free and Complexed Peptides Representing the Prefusogenic and Fusogenic Forms of Human Immunodeficiency Virus Type 1 gp41. J. Virol., 74:6186-6192, 2000. PubMed ID: 10846104.
Show all entries for this paper.
Gorny2002
Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Sandra Cohen, Victoria R. Polonis, William J. Honnen, Samuel C. Kayman, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. J. Virol., 76(18):9035-9045, Sep 2002. PubMed ID: 12186887.
Show all entries for this paper.
Gorny2003
Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162.
Show all entries for this paper.
Gorny2009
Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295.
Show all entries for this paper.
Harada2008
Shinji Harada, Kazuaki Monde, Yuetsu Tanaka, Tetsuya Kimura, Yosuke Maeda, and Keisuke Yusa. Neutralizing Antibodies Decrease the Envelope Fluidity of HIV-1. Virology, 370(1):142-150, 5 Jan 2008. PubMed ID: 17900650.
Show all entries for this paper.
Hioe1997b
C. E. Hioe, S. Xu, P. Chigurupati, S. Burda, C. Williams, M. K. Gorny, and S. Zolla-Pazner. Neutralization of HIV-1 Primary Isolates by Polyclonal and Monoclonal Human Antibodies. Int. Immunol., 9(9):1281-1290, Sep 1997. PubMed ID: 9310831.
Show all entries for this paper.
Holl2006
Vincent Holl, Maryse Peressin, Thomas Decoville, Sylvie Schmidt, Susan Zolla-Pazner, Anne-Marie Aubertin, and Christiane Moog. Nonneutralizing Antibodies Are Able To Inhibit Human Immunodeficiency Virus Type 1 Replication in Macrophages and Immature Dendritic Cells. J. Virol., 80(12):6177-6181, Jun 2006. PubMed ID: 16731957.
Show all entries for this paper.
Joshi2020
Vinita R. Joshi, Ruchi M. Newman, Melissa L. Pack, Karen A. Power, James B. Munro, Ken Okawa, Navid Madani, Joseph G. Sodroski, Aaron G. Schmidt, and Todd M. Allen. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog, 16(5):e1008577 doi, May 2020. PubMed ID: 32392227
Show all entries for this paper.
Kalia2005
Vandana Kalia, Surojit Sarkar, Phalguni Gupta, and Ronald C. Montelaro. Antibody Neutralization Escape Mediated by Point Mutations in the Intracytoplasmic Tail of Human Immunodeficiency Virus Type 1 gp41. J. Virol., 79(4):2097-2107, Feb 2005. PubMed ID: 15681412.
Show all entries for this paper.
Kimura2009
Tetsuya Kimura, Xiao-Hong Wang, Constance Williams, Susan Zolla-Pazner, and Miroslaw K. Gorny. Human Monoclonal Antibody 2909 Binds to Pseudovirions Expressing Trimers but not Monomeric HIV-1 Envelope Proteins. Hum. Antibodies, 18(1-2):35-40, 2009. PubMed ID: 19478397.
Show all entries for this paper.
Ling2004
Hong Ling, Peng Xiao, Osamu Usami, and Toshio Hattori. Thrombin Activates Envelope Glycoproteins of HIV Type 1 and Enhances Fusion. Microbes Infect., 6(5):414-420, Apr 2004. PubMed ID: 15109955.
Show all entries for this paper.
Manca1995
F. Manca, D. Fenoglio, M. T. Valle, G. L. Pira, A. Kunkl, R. S. Balderas, R. G. Baccala, D. H. Kono, A. Ferraris, D. Saverino, F. Lancia, L. Lozzi, and A. N. Theofilopoulos. Human T helper cells specific for HIV reverse transcriptase: possible role in intrastructural help for HIV envelope-specific antibodies. Eur. J. Immunol., 25:1217-1223, 1995. PubMed ID: 7539750.
Show all entries for this paper.
Mitchell1998
W. M. Mitchell, L. Ding, and J. Gabriel. Inactivation of a Common Epitope Responsible for the Induction of Antibody-Dependent Enhancement of HIV. AIDS, 12:147-156, 1998. PubMed ID: 9468363.
Show all entries for this paper.
Moog2014
C. Moog, N. Dereuddre-Bosquet, J.-L. Teillaud, M. E. Biedma, V. Holl, G. Van Ham, L. Heyndrickx, A. Van Dorsselaer, D. Katinger, B. Vcelar, S. Zolla-Pazner, I. Mangeot, C. Kelly, R. J. Shattock, and R. Le Grand. Protective Effect of Vaginal Application of Neutralizing and Nonneutralizing Inhibitory Antibodies Against Vaginal SHIV Challenge in Macaques. Mucosal Immunol., 7(1):46-56, Jan 2014. PubMed ID: 23591718.
Show all entries for this paper.
Nyambi2000
P. N. Nyambi, H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S. Zolla-Pazner. Conserved and Exposed Epitopes on Intact, Native, Primary Human Immunodeficiency Virus Type 1 Virions of Group M. J. Virol., 74:7096-7107, 2000. PubMed ID: 10888650.
Show all entries for this paper.
Peressin2011
M. Peressin, V. Holl, S. Schmidt, T. Decoville, D. Mirisky, A. Lederle, M. Delaporte, K. Xu, A. M. Aubertin, and C. Moog. HIV-1 Replication in Langerhans and Interstitial Dendritic Cells Is Inhibited by Neutralizing and Fc-Mediated Inhibitory Antibodies. J. Virol., 85(2):1077-1085, Jan 2011. PubMed ID: 21084491.
Show all entries for this paper.
Perez2009
Lautaro G. Perez, Matthew R. Costa, Christopher A. Todd, Barton F. Haynes, and David C. Montefiori. Utilization of Immunoglobulin G Fc Receptors by Human Immunodeficiency Virus Type 1: A Specific Role for Antibodies against the Membrane-Proximal External Region of gp41. J. Virol., 83(15):7397-7410, Aug 2009. PubMed ID: 19458010.
Show all entries for this paper.
Pollara2013
Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Marzena Pazgier, Barton F. Haynes, and Guido Ferrari. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity (ADCC) Responses. Curr. HIV Res., 11(5):378-387, Jul 2013. PubMed ID: 24191939.
Show all entries for this paper.
Saarloos1995
M. N. Saarloos, T. F. Lint, and G. T. Spear. Efficacy of HIV-Specific and `Antibody-Independent' Mechanisms for Complement Activation by HIV-Infected Cells. Clin. Exp. Immunol., 99:189-195, 1995. PubMed ID: 7851010.
Show all entries for this paper.
Spear1993
G. T. Spear, D. M. Takefman, B. L. Sullivan, A. L. Landay, and S. Zolla-Pazner. Complement activation by human monoclonal antibodies to human immunodeficiency virus. J. Virol., 67:53-59, 1993. This study looked at the ability of 16 human MAbs to activate complement. MAbs directed against the V3 region could induce C3 deposition on infected cells and virolysis of free virus, but antibodies to the CD4BS and C-terminal region and two regions in gp41 could induce no complement mediated effects. Pre-treatment with sCD4 could increase complement-mediated effects of anti-gp41 MAbs, but decreased the complement-mediated effects of V3 MAbs. Anti-gp41 MAbs were able to affect IIIB but not MN virolysis, suggesting spontaneous shedding of gp120 on IIIB virions exposes gp41 epitopes. IgG isotype did not appear to have an effect on virolysis or C3 deposition. PubMed ID: 7677959.
Show all entries for this paper.
Usami2005
Osamu Usami, Peng Xiao, Hong Ling, Yi Liu, Tadashi Nakasone, and Toshio Hattori. Properties of Anti-gp41 Core Structure Antibodies, Which Compete with Sera of HIV-1-Infected Patients. Microbes Infect., 7(4):650-657, Apr 2005. PubMed ID: 15823513.
Show all entries for this paper.
Verrier2001
F. Verrier, A. Nadas, M. K. Gorny, and S. Zolla-Pazner. Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. J. Virol., 75(19):9177--86, Oct 2001. URL: http://jvi.asm.org/cgi/content/full/75/19/9177. PubMed ID: 11533181.
Show all entries for this paper.
Vincent2008
Nadine Vincent, Amadou Kone, Blandine Chanut, Frédéric Lucht, Christian Genin, and Etienne Malvoisin. Antibodies Purified from Sera of HIV-1-Infected Patients by Affinity on the Heptad Repeat Region 1/Heptad Repeat Region 2 Complex of gp41 Neutralize HIV-1 Primary Isolates. AIDS, 22(16):2075-2085, 18 Oct 2008. PubMed ID: 18832871.
Show all entries for this paper.
Vincent2012
Nadine Vincent and Etienne Malvoisin. Ability of Antibodies Specific to the HIV-1 Envelope Glycoprotein to Block the Fusion Inhibitor T20 in a Cell-Cell Fusion Assay. Immunobiology, 217(10):943-950, Oct 2012. PubMed ID: 22387075.
Show all entries for this paper.
Willey2011
Suzanne Willey, Marlén M. I. Aasa-Chapman, Stephen O'Farrell, Pierre Pellegrino, Ian Williams, Robin A. Weiss, and Stuart J. D. Neil. Extensive Complement-Dependent Enhancement of HIV-1 by Autologous Non-Neutralising Antibodies at Early Stages of Infection. Retrovirology, 8:16, 2011. PubMed ID: 21401915.
Show all entries for this paper.
Witt2017
Kristen C. Witt, Luis Castillo-Menendez, Haitao Ding, Nicole Espy, Shijian Zhang, John C. Kappes, and Joseph Sodroski. Antigenic Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Precursor Incorporated into Nanodiscs. PLoS One, 12(2):e0170672, 2017. PubMed ID: 28151945.
Show all entries for this paper.
Xu1991
J.-Y. Xu, M. K. Gorny, T. Palker, S. Karwowska, and S. Zolla-Pazner. Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies. J. Virol., 65:4832-4838, 1991. The immunodominance of linear epitope in the region 590-600 of gp41 (cluster I) was established, and a second conformational epitope was mapped that reacted with a region between amino acids 644 and 663 (cluster II). Titration experiments showed that there was 100-fold more antibody to cluster I than cluster II in patient sera. PubMed ID: 1714520.
Show all entries for this paper.
Yates2018
Nicole L. Yates, Allan C. deCamp, Bette T. Korber, Hua-Xin Liao, Carmela Irene, Abraham Pinter, James Peacock, Linda J. Harris, Sheetal Sawant, Peter Hraber, Xiaoying Shen, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayapan, Phillip W. Berman, Merlin L. Robb, Giuseppe Pantaleo, Susan Zolla-Pazner, Barton F. Haynes, S. Munir Alam, David C. Montefiori, and Georgia D. Tomaras. HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J. Virol., 92(8), 15 Apr 2018. PubMed ID: 29386288.
Show all entries for this paper.
Yuan2009
Wen Yuan, Xing Li, Marta Kasterka, Miroslaw K. Gorny, Susan Zolla-Pazner, and Joseph Sodroski. Oligomer-Specific Conformations of the Human Immunodeficiency Virus (HIV-1) gp41 Envelope Glycoprotein Ectodomain Recognized by Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 25(3):319-328, Mar 2009. PubMed ID: 19292593.
Show all entries for this paper.