Found 1 matching record:
Displaying record number 1254
Download this epitope
record as JSON.
MAb ID |
E51 |
HXB2 Location |
gp160(420-423) DNA(7482..7493) |
gp160 Epitope Map
|
Author Location |
gp120(420-423 HXB2) |
Research Contact |
Joseph Sodroski, joseph_sodroski@dfci.harvard.edu |
Epitope |
IKQI
|
Epitope Alignment
|
Subtype |
B |
Ab Type |
gp120 CD4i, gp120 CCR5BS |
Neutralizing |
P |
Species
(Isotype)
|
human |
Patient |
AC-01 |
Immunogen |
HIV-1 infection |
Keywords |
ADCC, adjuvant comparison, antibody binding site, antibody generation, antibody interactions, antibody sequence, assay or method development, binding affinity, chimeric antibody, co-receptor, glycosylation, neutralization, polyclonal antibodies, review, subtype comparisons, vaccine antigen design, variant cross-reactivity |
Notes
Showing 37 of
37 notes.
-
E51: Nanodiscs (discoidal lipid bilayer particles of 10-17 nm surrounded by membrane scaffold protein) were used to incorporate Env complexes for the purpose of vaccine platform generation. The Env-NDs (Env-NDs) were characterized for antigenicity and stability by non-NAbs and NAbs. Most NAb epitopes in gp41 MPER and in the gp120:gp41 interface were well exposed while non-NAb cell surface epitopes were generally masked. Anti-gp120 non-NAb E51, binds at a fraction of the binding of 2G12 to Env-ND, and this binding is sensitive to glutaraldehyde treatment .
Witt2017
(vaccine antigen design, binding affinity)
-
E51: Three strategies were applied to perturb the structure of Env in order to make the protein more susceptible to neutralization: exposure to cold, Env-activating ligands, and a chaotropic agent. A panel of mAbs (E51, 48d, 17b, 3BNC176, 19b, 447-52D, 39F, b12, b6, PG16, PGT145, PGT126, 35O22, F240, 10E8, 7b2, 2G12) was used to test the neutralization resistance of a panel of subtype B and C pseudoviruses with and without these agents. Both cold and CD4 mimicking agents (CD4Ms) increased the sensitivity of some viruses. The chaotropic agent urea had little effect by itself, but could enhance the effects of cold or CD4Ms. Thus Env destabilizing agents can make Env more susceptible to neutralization and may hold promise as priming vaccine antigens.
Johnson2017
(vaccine antigen design)
-
E51: LANL database note: This monoclonal antibody is a CHAVI reagent (http://chavi.org/); Species: human; Category: CD4i MAbs; Contact person: James Robinson
-
E51: In neutralization assays of antibody mixtures, there was a modest synergy between the CD4bs VRC01 and either of the two CD4i MAbs E51 and 412d. The synergy is likely the result of the ability of CD4i antibodies (E51 or 412d) to induce the open state and facilitate access to the CD4 binding site. The presence of E51 enhanced the Env binding of VRC01, NIH45-46, NIH45-46G54W, and to a lesser extent 3BNC117.
Gardner2016
(antibody interactions)
-
E51: Infectious molecular clones of transmitted founder (TF) and chronic control (CC) viruses of subtypes B and C were generated to explain the critical steps in HIV-1 transmission . These viruses were characterized and compared on their phenotypic properties specifically designed to probe the earliest stages of viral infection. CD4 induced E51 mAb was used to generate chimeric Ab CD4-218.3-E51 to capture the Env of TFs in a newly developed ELISA reported in this study.
Parrish2013
(assay or method development, chimeric antibody)
-
E51: The complexity of the epitopes recognized by ADCC responses in HIV-1 infected individuals and candidate vaccine recipients is discussed in this review. E51 is discussed as CD4i-targeting, anti-gp120 Cluster B mAb which mediates ADCC.
Pollara2013
(ADCC, review)
-
E51: This paper reported the nature of junk Env glycan that undermine the development of Ab responses against gp120/gp41 trimers and evaluated enzyme digestion as a way to remove aberrant Env to produce "trimer VLPs". E51 was used in the anti-gp120 cocktail in BN-PAGE and western blot experiments to prove that enzymes removed junk Env from VLPs and inactivated virus..
Crooks2011
(glycosylation)
-
E51: ADCC mediated by CD4i mAbs (or anti-CD4i-epitope mAbs) was studied using a panel of 41 novel mAbs. Three epitope clusters were classified, depending on cross-blocking in ELISA by different mAbs: Cluster A - in the gp120 face, cross-blocking by mAbs A32 and/or C11; Cluster B - in the region proximal to CoRBS (co-receptor binding site) involving V1V2 domain, cross-blocking by E51-M9; Cluster C - CoRBS, cross-blocking by 17b and/or 19e. The ADCC half-maximal effective concentrations of the Cluster A and B mAbs were generally 0.5-1 log lower than those of the Cluster C mAbs, and none of the Cluster A or B mAbs could neutralize HIV-1. Cluster A's A32- and C11-blockable mAbs were suggested to recognize conformational epitopes within the inner domain of gp120 that involve the C1 region. E51 was used as the positive control for CD4i mAb in different assays. Neutralization potency and breadth were also assessed for these mAbs. No correlation was found between ADCC and neutralization Abs' action or functional responses.
Guan2013
(ADCC, antibody interactions)
-
E51: This study uncovered a potentially significant contribution of VH replacement products which are highly enriched in IgH genes for the generation of anti-HIV Abs including anti-gp41, anti-V3 loop, anti-gp120, CD4i and PGT Abs. The VH replacement "footprints" within CD4i Abs preferentially encode negatively charged amino acids within IgH CDR3. The details of E51 VH replacement products in IgH gene and mutations and amino acid sequence analysis are described in Table 1,Table 2 and Fig 3.
Liao2013a
(antibody sequence)
-
E51: Different adjuvants, including Freund's adjuvant (FCA/FIA), MF59, Carbopol-971P and 974P were compared on their ability to elicit antibody responses in rabbits. Combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA. There was no difference in binding of this MAb to gp140 SF162 with MF59 adjuvant, but there was 3-fold decrease of antigenicity with FIA, C971, C974, C971+MF59 C971+MF59 as compared to the unadjuvanted sample.
Lai2012
(adjuvant comparison)
-
E51: The goal of this study was to improve the humoral response to HIV-1 by targeting trimeric Env gp140 to B cells. The gp140 was fused to a proliferation-inducing ligand (APRIL), B cell activation factor (BAFF) and CD40 ligand (CD40L). These fusion proteins increased the expression of activation-induced-cytidine deaminase (AID) responsible for somatic hypermutation, Ab affinity maturation, and Ab class switching. The Env-APRIL induced high anti-Env responses against tier1 viruses. E51 was used in BN-PAGE trimer shift assay.
Melchers2012
(neutralization)
-
E51: Polyclonal B cell responses to conserved neutralization epitopes are reported. Cross-reactive plasma samples were identified and evaluated from 308 subjects tested. E51 was used as a control mAb in the comprehensive set of assays performed.
Tomaras2011
(neutralization, polyclonal antibodies)
-
E51: A panel of glycan deletion mutants was created by point mutation into HIV gp160, showing that glycans are important targets on HIV-1 glycoproteins for broad neutralizing responses in vivo. Enrichment of high mannose N-linked glycan(HM-glycan) of HIV-1 glycoprotein enhanced neutralizing activity of sera from 8/9 patients. E51 was used as a control to compare the neutralizing activity of patients' sera.
Lavine2012
(neutralization)
-
E51: Antigenic properties of undigested VLPs and endo H-digested WT trimer VLPs were compared. Binding to E168K+ N189A WT VLPs was stronger than binding to the parent WT VLPs, uncleaved VLPs in presence of sCD4. There was no significant correlation between E168K+N189A WT VLP binding and E51 neutralization, while trimer VLP ELISA binding and neutralization exhibited a significant correlation. BN-PAGE shifts using digested E168K + N189A WT trimer VLPs exhibited prominence compared to WT VLPs.
Tong2012
(neutralization, binding affinity)
-
E51: Broadly neutralizing antibodies circulating in plasma were studied by affinity chromatography and isoelectric focusing. The Abs fell in 2 groups. One group consisted of antibodies with restricted neutralization breadth that had neutral isoelectric points. These Abs bound to envelope monomers and trimers versus core antigens from which variable loops and other domains have been deleted. Another minor group consisted of broadly neutralizing antibodies consistently distinguished by more basic isoelectric points and specificity for epitopes shared by monomeric gp120, gp120 core, or CD4-induced structures. The pI values estimated for neutralizing plasma IgGs were compared to those of human anti-gp120 MAbs, including 5 bnMAbs (PG9, PG16, VRC01, b12, and 2G12), 2 narrowly neutralizing MAbs (17b and E51), and 3 nonneutralizing MAbs (A32, C11, and 19e). MAbs 17b and E51, with restricted neutralizing activity, had pIs from 7 to 7.85. Plasma-derived, anti-gp120 IgG fractions in this range also had narrow neutralization breadth.
Sajadi2012
(polyclonal antibodies)
-
E51: To test whether HIV-1 particle maturation alters the conformation of the Env proteins, a sensitive and quantitative imaging-based Ab-binding assay was used to probe the conformations of full-length and cytoplasmic tail (CT) truncated Env proteins on mature and immature HIV-1 particles. In the absence of sCD4, MAb E51 binding to gp120 was approximately 20% greater on immature vs. mature HIV-1 particles. 17b, A1g8, and E51 binding to immature virions was stimulated by sCD4 to a greater or equal extent vs. mature particles, with MAb 17b exhibiting the greatest increase. This suggested that CD4 binding triggers exposure of some epitopes to an equal extent on immature and mature virions and other epitopes to a greater extent on immature virions.
Joyner2011
(binding affinity)
-
E51: CDR H3 domains derived from 4 anti-HIV mAbs, PG16, PG9, b12, E51, and anti-influenza MAb AVF were genetically linked to glycosil-phosphatidylinositol (GPI) attachment signal of decay-accelerating factor (DAF) to determine whether the exceptionally long and unique structure of the CDR H3 subdomain of PG16 is sufficient for epitope recognition and neutralization. GPI-CDR H3(E51) conferred over 99% inhibition of 11 HIV-1 pseudotypes, over 90% inhibition of the other 12 HIV-1 pseudotypes, and 83% inhibition of JRFL. Compared to mock-transduced parental TZM-bl cells, cells transduced with GPI-CDR H3(E51) did not show any significant neutralization activity against SIVMne027 control but neutralized all 3 HIV-1 strains.
Liu2011
(neutralization, variant cross-reactivity)
-
E51: Impact of in vivo Env-CD4 interactions was studied during vaccinations of Rhesus macaques with two Env trimer variants rendered CD4 binding defective (368D/R and 423/425/431 trimers) and wild-type (WT) trimers. Ab binding profiles of the three trimer variants were assessed by binding analyses to different MAbs. E51 bound similarly to WT and 368D/R trimers but its binding affinity was completely abrogated for 423/425/431 trimers.
Douagi2010
(binding affinity)
-
E51: Neutralizing activities of E51 were similar against parent and GnTI (complex glycans of the neutralizing face are replaced by fully trimmed oligomannose stumps) viruses, and the N301Q mutant virus (glycan at position 301 is removed), with all viruses being resistant to neutralization by this Ab. However, some susceptibility of N201Q mutant virus was observed at high E51 concentrations. E51 did not bind to native Env trimers.
Binley2010
(glycosylation, neutralization, binding affinity)
-
E51: gp41 L669S mutant virus was moderately sensitive to neutralization by E51 while the L669 wild type virus was resistant. This indicates that conformational changes in the MPER could alter the exposure of neutralization epitopes in other regions of HIV-1 Env.
Shen2010
(neutralization)
-
E51: Fusion of CD4 with E51 scFv resulted in CD4-scFvE51 reagent with a twofold enhanced neutralization potency compared to its CD4 and scFvE51 components. The neutralization potency was improved by inclusion of an IgG Fc region and by linkage of CD4 to the heavy chain of E51. The resulting CD4hc-IgGE51 neutralized a range of clade A, B and C viruses with potency comparable to other broadly neutralizing Abs. The complex had high expression levels.
West2010
(neutralization, variant cross-reactivity, subtype comparisons)
-
E51: NAb specificities of a panel of HIV sera were systematically analyzed by selective adsorption with native gp120 and specific mutant variants. To test for presence of coreceptor binding region MAbs in sera, gp120 I420 mutant was used. This mutant was not recognized by E51. In some of the broadly neutralizing sera, the gp120-directed neutralization was mapped to CD4bs. Some sera were positive for NAbs against coreceptor binding region. A subset of sera also contained NAbs directed against MPER.
Li2009c
(assay or method development)
-
E51: Resurfaced stabilized core 3 (RSC3) protein was designed to preserve the antigenic structure of the gp120 CD4bs neutralizing surface but eliminate other antigenic regions of HIV-1. RSC3 did not show binding to E51.
Wu2010
(binding affinity)
-
E51: Sera from rabbits immunized with subtype A SOSIP gp140 trimers was used in virus competition assay. E51 was able to capture the virus effectively.
Kang2009
-
E51: The Ig usage for variable heavy chain of this Ab was as follows: IGHV:1-69*01, IGHD:2-2, D-RF:3, IGHJ:6. Non-V3 mAbs preferentially used the VH1-69 gene segment. In contrast to V3 mAbs, these non-V3 mAbs used several VH4 gene segments and the D3-9 gene segment. Similarly to the V3 mAbs, the non-V3 mAbs used the VH3 gene family in a reduced manner. Anti-CD4i mAbs exclusively used the VH1 gene family.
Gorny2009
(antibody sequence)
-
E51: Two chimeras were constructed from a new HIV-2KR.X7 proviral scaffold where the V3 region was substituted with the V3 from HIV-1 YU2 and Ccon, generating subtype B and C HIV-2 V3 chimera. Both chimera, and the wildtype HIV-2KR and its derivatives HIV-2KR.X4 and HIV-2KR.X7 were resistant to neutralization by E51.
Davis2009
(neutralization)
-
E51: E51e structure, sulfation, binding, and neutralization activity are reviewed in detail.
Lin2007
(review)
-
E51: 24 broadly neutralizing plasmas from HIV-1 subtype B and C infected individuals were investigated using a series of mapping methods to identify viral epitopes targeted by NAbs. Activity directed to the CD4i epitope of gp120 was assessed by the abilities of the plasmas to inhibit virus capture by the MAb E51 in the presence of sCD4. CD4i titers for the inhibition were high for all the plasmas, and did not differ between the subtypes, suggesting that the contribution of the CD4i-Abs for the plasma neutralization activity was minimal.
Binley2008
(neutralization, subtype comparisons)
-
E51: Interactions of this MAb with gp120 monomer and two cleavage-defective gp140 trimers were studied. It was shown that E51 interactions with the soluble monomers and trimers were dramatically decreased by GA cross-linking of the proteins, indicating that the E51 epitope was affected by cross-linking.
Yuan2006
(antibody binding site, antibody interactions, binding affinity)
-
E51: This review summarizes data on the role of NAb in HIV-1 infection and the mechanisms of Ab protection, data on challenges and strategies to design better immunogens that may induce protective Ab responses, and data on structure and importance of MAb epitopes targeted for immune intervention. The importance of standardized assays and standardized virus panels in neutralization and vaccine studies is also discussed.
Srivastava2005
(antibody binding site, vaccine antigen design, review)
-
E51: This Ab bound with an intermediate affinity to gp120IIIb, it did not prevent uptake of gp120 by APCs, and had no inhibitory effect on gp120 antigen presentation by MHC class II. E51 disassociated from gp120 at acidic pH. Lysosomal enzyme digestion of gp120 in complex with E51 yielded fragmentation similar to that of gp120 alone, and digestion rate was intermediate, between the rapid digestion of gp120 alone and the slow digestion of gp120 in complex with high-affinity Ab5145A. It is thus concluded that CD4i Ab E51 does not have an inhibitory effect on gp120 processing and presentation.
Tuen2005
(antibody interactions, binding affinity)
-
E51: This review focuses on the importance of neutralizing Abs in protecting against HIV-1 infection, including mechanisms of Ab interference with the viral lifecycle, Ab responses elicited during natural HIV infection, and use of monoclonal and polyclonal Abs in passive immunization. In addition, vaccine design strategies for eliciting of protective broadly neutralizing Abs are discussed. MAbs included in this review are: 2F5, Clone 3 (CL3), 4E10, Z13, IgG1b12, 2G12, m14, 447-52D, 17b, X5, m16, 47e, 412d, E51, CM51, F105, F425, 19b, 2182, DO142-10, 697-D, 448D, 15e and Cβ1.
McCann2005
(antibody binding site, co-receptor, neutralization, review)
-
E51: E51 was obtained from an HIV-1 infected individual with a potent ELISA response to the gp120. It was shown that this MAb could be sulfate-modified. The results indicated that the sulfates present on E51 are localized on tyrosines within its heavy chain CDR3 region and that they contribute to E51s ability to associate with gp120 of the ADA isolate. Binding efficiency of E51 to ADA gp120 was increased by 25% in the presence of CD4, showing that E51 is a CD4i Ab. Association of E51 with ADA gp120-CD4-Ig complex was inhibited by a sulfated peptide with a sequence corresponding to the CCR5 amino terminus, indicating that E51 binds a CD4-enhanced epitope overlapping the binding domain of CCR5 amino terminus. Neutralization assays showed that E51 neutralizes primary R5 and R5X4 isolates more efficiently, and X4 isolates less efficiently, than CD4i Abs 17b and 48d. scFv E51 was shown to efficiently bind to gp120 of three R5 isolates and to the HXBc2 X4 isolate.
Choe2003
(antibody binding site, co-receptor, neutralization)
-
E51: The CDR3 regions of CD4i Abs (E51, 412d, 17b, C12 and 47e) were cloned onto human IgG1 and tested for their ability to inhibit CCR5 binding. Only E51 successfully immunoprecipitated gp120. The sulfated peptide from E51 (pE51) efficiently bound gp120, was enhanced by CD4, and could neutralize HIV-1 more effectively than peptides based on CCR5. pE51 was able to block infection by a range of subtype B isolates.
Dorfman2006
(co-receptor)
-
E51: Four consensus B Env constructs: full length gp160, uncleaved gp160, truncated gp145, and N-linked glycosylation-site deleted (gp160-201N/S) were compared. All were packaged into virions, and all but the fusion defective uncleaved version mediated infection using the CCR5 co-receptor. CD4 inducible MAbs 17b and E51 were tested for the ability to neutralize the various forms of Con B; as anticipated gp160 and gp145 were not neutralized by these two MAbs, but the gp160-201N/S mutant was neutralized with IC50 values of 10 ug/ml, suggesting increased formation and/or exposure of the co-receptor binding site. The poorly infectious clone WITO4160.27 was also somewhat susceptible to neutralization by these clones.
Kothe2007
(vaccine antigen design, variant cross-reactivity)
-
E51: Of 35 Env-specific MAbs tested, only 2F5, 4E10, IgG1b12, and two CD4BS adjacent MAbs (A32 and 1.4G) and gp41 MAbs (2.2B and KU32) had binding patterns suggesting polyspecific autoreactivity, and similar reactivities may be difficult to induce with vaccines because of elimination of such autoreactivity. E51 has no indication of polyspecific autoreactivity.
Haynes2005
(antibody binding site)
-
E51: E51 recognizes a highly conserved epitope localized in the basic β19-strand (gp120 aa420-423), a region involved in CCR5 binding. The MAb was isolated from a EBV transformed B-cell line established from an HIV+ individual undergoing early STI. Fab fragments were also produced. E51, like CD4i MAb 17b, blocks CCR5 binding to sCD4-bound gp120. The presence of sCD4 induces a conformational change in gp120, which enhances ligand recognition. The substitutions E381R, F383S, R419D I420R, K421D, Q422L, I423S, and Y435S (HXB2 numbering) all severely reduce 17b and E51 binding. All but I423S also diminish CCR5 binding by more than 50%. The mutation F383S also inhibits sCD4 binding and CD4BS MAb F105 binding, and K421D inhibits F105 binding, but not sCD4. E51 has more cross-neutralizing potency than other prototype CD4i MAbs (17b) for B and C clade isolates. E51 and 17b both neutralized HIV-1 clade B strains HXBc2 and ADA, while JR-FL and 89.6 were only neutralized by E51, not 17b. Clade C strains MCGP1.3 and SA32 were both inhibited by 17b and E51, but E51 was more potent against SA32.
Xiang2003
(antibody binding site, antibody generation, co-receptor, variant cross-reactivity, subtype comparisons)
References
Showing 36 of
36 references.
Isolation Paper
Xiang2003
Shi-Hua Xiang, Liping Wang, Mariam Abreu, Chih-Chin Huang, Peter D. Kwong, Eric Rosenberg, James E. Robinson, and Joseph Sodroski. Epitope Mapping and Characterization of a Novel CD4-Induced Human Monoclonal Antibody Capable of Neutralizing Primary HIV-1 Strains. Virology, 315(1):124-134, 10 Oct 2003. PubMed ID: 14592765.
Show all entries for this paper.
Binley2008
James M. Binley, Elizabeth A. Lybarger, Emma T. Crooks, Michael S. Seaman, Elin Gray, Katie L. Davis, Julie M. Decker, Diane Wycuff, Linda Harris, Natalie Hawkins, Blake Wood, Cory Nathe, Douglas Richman, Georgia D. Tomaras, Frederic Bibollet-Ruche, James E. Robinson, Lynn Morris, George M. Shaw, David C. Montefiori, and John R. Mascola. Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C. J. Virol., 82(23):11651-11668, Dec 2008. PubMed ID: 18815292.
Show all entries for this paper.
Binley2010
James M Binley, Yih-En Andrew Ban, Emma T. Crooks, Dirk Eggink, Keiko Osawa, William R. Schief, and Rogier W. Sanders. Role of Complex Carbohydrates in Human Immunodeficiency Virus Type 1 Infection and Resistance to Antibody Neutralization. J. Virol., 84(11):5637-5655, Jun 2010. PubMed ID: 20335257.
Show all entries for this paper.
Choe2003
Hyeryun Choe, Wenhui Li, Paulette L. Wright, Natalya Vasilieva, Miro Venturi, Chih-Chin Huang, Christoph Grundner, Tatyana Dorfman, Michael B. Zwick, Liping Wang, Eric S. Rosenberg, Peter D. Kwong, Dennis R. Burton, James E. Robinson, Joseph G. Sodroski, and Michael Farzan. Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 114(2):161-170, 25 Jul 2003. PubMed ID: 12887918.
Show all entries for this paper.
Crooks2011
Ema T. Crooks, Tommy Tong, Keiko Osawa, and James M. Binley. Enzyme Digests Eliminate Nonfunctional Env from HIV-1 Particle Surfaces, Leaving Native Env Trimers Intact and Viral Infectivity Unaffected. J. Virol., 85(12):5825-5839, Jun 2011. PubMed ID: 21471242.
Show all entries for this paper.
Davis2009
Katie L. Davis, Frederic Bibollet-Ruche, Hui Li, Julie M. Decker, Olaf Kutsch, Lynn Morris, Aidy Salomon, Abraham Pinter, James A. Hoxie, Beatrice H. Hahn, Peter D. Kwong, and George M. Shaw. Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. J. Virol., 83(3):1240-1259, Feb 2009. PubMed ID: 19019969.
Show all entries for this paper.
Dorfman2006
Tatyana Dorfman, Michael J. Moore, Alexander C. Guth, Hyeryun Choe, and Michael Farzan. A Tyrosine-Sulfated Peptide Derived from the Heavy-Chain CDR3 Region of an HIV-1-Neutralizing Antibody Binds gp120 and Inhibits HIV-1 Infection. J. Biol. Chem., 281(39):28529-28535, 29 Sep 2006. PubMed ID: 16849323.
Show all entries for this paper.
Douagi2010
Iyadh Douagi, Mattias N. E. Forsell, Christopher Sundling, Sijy O'Dell, Yu Feng, Pia Dosenovic, Yuxing Li, Robert Seder, Karin Loré, John R. Mascola, Richard T. Wyatt, and Gunilla B. Karlsson Hedestam. Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates. J. Virol., 84(4):1683-1695, Feb 2010. PubMed ID: 19955308.
Show all entries for this paper.
Gardner2016
Matthew R. Gardner, Christoph H. Fellinger, Neha R. Prasad, Amber S. Zhou, Hema R. Kondur, Vinita R. Joshi, Brian D. Quinlan, and Michael Farzan. CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies. J. Virol., 90(17):7822-7832, 1 Sep 2016. PubMed ID: 27334589.
Show all entries for this paper.
Gorny2009
Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295.
Show all entries for this paper.
Guan2013
Yongjun Guan, Marzena Pazgier, Mohammad M. Sajadi, Roberta Kamin-Lewis, Salma Al-Darmarki, Robin Flinko, Elena Lovo, Xueji Wu, James E. Robinson, Michael S. Seaman, Timothy R. Fouts, Robert C. Gallo, Anthony L. DeVico, and George K. Lewis. Diverse Specificity and Effector Function Among Human Antibodies to HIV-1 Envelope Glycoprotein Epitopes Exposed by CD4 Binding. Proc. Natl. Acad. Sci. U.S.A., 110(1):E69-E78, 2 Jan 2013. PubMed ID: 23237851.
Show all entries for this paper.
Haynes2005
Barton F. Haynes, Judith Fleming, E. William St. Clair, Herman Katinger, Gabriela Stiegler, Renate Kunert, James Robinson, Richard M. Scearce, Kelly Plonk, Herman F. Staats, Thomas L. Ortel, Hua-Xin Liao, and S. Munir Alam. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 308(5730):1906-1908, 24 Jun 2005. Comment in Science 2005 Jun 24;308(5730):1878-9. PubMed ID: 15860590.
Show all entries for this paper.
Johnson2017
Jacklyn Johnson, Yinjie Zhai, Hamid Salimi, Nicole Espy, Noah Eichelberger, Orlando DeLeon, Yunxia O'Malley, Joel Courter, Amos B. Smith, III, Navid Madani, Joseph Sodroski, and Hillel Haim. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J. Virol., 91(15), 1 Aug 2017. PubMed ID: 28490588.
Show all entries for this paper.
Joyner2011
Amanda S. Joyner, Jordan R. Willis, James E.. Crowe, Jr., and Christopher Aiken. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles. PLoS Pathog., 7(9):e1002234, Sep 2011. PubMed ID: 21931551.
Show all entries for this paper.
Kang2009
Yun Kenneth Kang, Sofija Andjelic, James M. Binley, Emma T. Crooks, Michael Franti, Sai Prasad N. Iyer, Gerald P. Donovan, Antu K. Dey, Ping Zhu, Kenneth H. Roux, Robert J. Durso, Thomas F. Parsons, Paul J. Maddon, John P. Moore, and William C. Olson. Structural and Immunogenicity Studies of a Cleaved, Stabilized Envelope Trimer Derived from Subtype A HIV-1. Vaccine, 27(37):5120-5132, 13 Aug 2009. PubMed ID: 19567243.
Show all entries for this paper.
Kothe2007
Denise L. Kothe, Julie M Decker, Yingying Li, Zhiping Weng, Frederic Bibollet-Ruche, Kenneth P. Zammit, Maria G. Salazar, Yalu Chen, Jesus F. Salazar-Gonzalez, Zina Moldoveanu, Jiri Mestecky, Feng Gao, Barton F. Haynes, George M. Shaw, Mark Muldoon, Bette T. M. Korber, and Beatrice H. Hahn. Antigenicity and Immunogenicity of HIV-1 Consensus Subtype B Envelope Glycoproteins. Virology, 360(1):218-234, 30 Mar 2007. PubMed ID: 17097711.
Show all entries for this paper.
Lai2012
Rachel P. J. Lai, Michael S. Seaman, Paul Tonks, Frank Wegmann, David J. Seilly, Simon D. W. Frost, Celia C. LaBranche, David C. Montefiori, Antu K. Dey, Indresh K. Srivastava, Quentin Sattentau, Susan W. Barnett, and Jonathan L. Heeney. Mixed Adjuvant Formulations Reveal a New Combination That Elicit Antibody Response Comparable to Freund's Adjuvants. PLoS One, 7(4):e35083, 2012. PubMed ID: 22509385.
Show all entries for this paper.
Lavine2012
Christy L. Lavine, Socheata Lao, David C. Montefiori, Barton F. Haynes, Joseph G. Sodroski, Xinzhen Yang, and NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI). High-Mannose Glycan-Dependent Epitopes Are Frequently Targeted in Broad Neutralizing Antibody Responses during Human Immunodeficiency Virus Type 1 Infection. J. Virol., 86(4):2153-2164, Feb 2012. PubMed ID: 22156525.
Show all entries for this paper.
Li2009c
Yuxing Li, Krisha Svehla, Mark K. Louder, Diane Wycuff, Sanjay Phogat, Min Tang, Stephen A. Migueles, Xueling Wu, Adhuna Phogat, George M. Shaw, Mark Connors, James Hoxie, John R. Mascola, and Richard Wyatt. Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. J Virol, 83(2):1045-1059, Jan 2009. PubMed ID: 19004942.
Show all entries for this paper.
Liao2013a
Hongyan Liao, Jun-tao Guo, Miles D. Lange, Run Fan, Michael Zemlin, Kaihong Su, Yongjun Guan, and Zhixin Zhang. Contribution of V(H) Replacement Products to the Generation of Anti-HIV Antibodies. Clin. Immunol., 146(1):46-55, Jan 2013. PubMed ID: 23220404.
Show all entries for this paper.
Lin2007
George Lin and Peter L. Nara. Designing Immunogens to Elicit Broadly Neutralizing Antibodies to the HIV-1 Envelope Glycoprotein. Curr. HIV Res., 5(6):514-541, Nov 2007. PubMed ID: 18045109.
Show all entries for this paper.
Liu2011
Lihong Liu, Michael Wen, Weiming Wang, Shumei Wang, Lifei Yang, Yong Liu, Mengran Qian, Linqi Zhang, Yiming Shao, Jason T. Kimata, and Paul Zhou. Potent and Broad Anti-HIV-1 Activity Exhibited by a Glycosyl-Phosphatidylinositol-Anchored Peptide Derived from the CDR H3 of Broadly Neutralizing Antibody PG16. J. Virol., 85(17):8467-8476, Sep 2011. PubMed ID: 21715497.
Show all entries for this paper.
McCann2005
C. M. Mc Cann, R. J. Song, and R. M. Ruprecht. Antibodies: Can They Protect Against HIV Infection? Curr. Drug Targets Infect. Disord., 5(2):95-111, Jun 2005. PubMed ID: 15975016.
Show all entries for this paper.
Melchers2012
Mark Melchers, Ilja Bontjer, Tommy Tong, Nancy P. Y. Chung, Per Johan Klasse, Dirk Eggink, David C. Montefiori, Maurizio Gentile, Andrea Cerutti, William C. Olson, Ben Berkhout, James M. Binley, John P. Moore, and Rogier W. Sanders. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses. J. Virol., 86(5):2488-2500, Mar 2012. PubMed ID: 22205734.
Show all entries for this paper.
Parrish2013
Nicholas F. Parrish, Feng Gao, Hui Li, Elena E. Giorgi, Hannah J. Barbian, Erica H. Parrish, Lara Zajic, Shilpa S. Iyer, Julie M. Decker, Amit Kumar, Bhavna Hora, Anna Berg, Fangping Cai, Jennifer Hopper, Thomas N. Denny, Haitao Ding, Christina Ochsenbauer, John C. Kappes, Rachel P. Galimidi, Anthony P. West, Jr., Pamela J. Bjorkman, Craig B. Wilen, Robert W. Doms, Meagan O'Brien, Nina Bhardwaj, Persephone Borrow, Barton F. Haynes, Mark Muldoon, James P. Theiler, Bette Korber, George M. Shaw, and Beatrice H. Hahn. Phenotypic Properties of Transmitted Founder HIV-1. Proc. Natl. Acad. Sci. U.S.A., 110(17):6626-6633, 23 Apr 2013. PubMed ID: 23542380.
Show all entries for this paper.
Pollara2013
Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Marzena Pazgier, Barton F. Haynes, and Guido Ferrari. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity (ADCC) Responses. Curr. HIV Res., 11(5):378-387, Jul 2013. PubMed ID: 24191939.
Show all entries for this paper.
Sajadi2012
Mohammad M. Sajadi, George K. Lewis, Michael S. Seaman, Yongjun Guan, Robert R. Redfield, and Anthony L. DeVico. Signature Biochemical Properties of Broadly Cross-Reactive HIV-1 Neutralizing Antibodies in Human Plasma. J. Virol., 86(9):5014-5025, May 2012. PubMed ID: 22379105.
Show all entries for this paper.
Shen2010
Xiaoying Shen, S. Moses Dennison, Pinghuang Liu, Feng Gao, Frederick Jaeger, David C. Montefiori, Laurent Verkoczy, Barton F. Haynes, S. Munir Alam, and Georgia D. Tomaras. Prolonged Exposure of the HIV-1 gp41 Membrane Proximal Region with L669S Substitution. Proc. Natl. Acad. Sci. U.S.A., 107(13):5972-5977, 30 Mar 2010. PubMed ID: 20231447.
Show all entries for this paper.
Srivastava2005
Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830.
Show all entries for this paper.
Tomaras2011
Georgia D. Tomaras, James M. Binley, Elin S. Gray, Emma T. Crooks, Keiko Osawa, Penny L. Moore, Nancy Tumba, Tommy Tong, Xiaoying Shen, Nicole L. Yates, Julie Decker, Constantinos Kurt Wibmer, Feng Gao, S. Munir Alam, Philippa Easterbrook, Salim Abdool Karim, Gift Kamanga, John A. Crump, Myron Cohen, George M. Shaw, John R. Mascola, Barton F. Haynes, David C. Montefiori, and Lynn Morris. Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals. J. Virol., 85(21):11502-11519, Nov 2011. PubMed ID: 21849452.
Show all entries for this paper.
Tong2012
Tommy Tong, Ema T. Crooks, Keiko Osawa, and James M. Binley. HIV-1 Virus-Like Particles Bearing Pure Env Trimers Expose Neutralizing Epitopes but Occlude Nonneutralizing Epitopes. J. Virol., 86(7):3574-3587, Apr 2012. PubMed ID: 22301141.
Show all entries for this paper.
Tuen2005
Michael Tuen, Maria Luisa Visciano, Peter C. Chien, Jr., Sandra Cohen, Pei-de Chen, James Robinson, Yuxian He, Abraham Pinter, Miroslaw K Gorny, and Catarina E Hioe. Characterization of Antibodies that Inhibit HIV gp120 Antigen Processing and Presentation. Eur. J. Immunol., 35(9):2541-2551, Sep 2005. PubMed ID: 16106369.
Show all entries for this paper.
West2010
Anthony P. West, Jr., Rachel P. Galimidi, Christopher P. Foglesong, Priyanthi N. P. Gnanapragasam, Joshua S. Klein, and Pamela J. Bjorkman. Evaluation of CD4-CD4i Antibody Architectures Yields Potent, Broadly Cross-Reactive Anti-Human Immunodeficiency Virus Reagents. J. Virol., 84(1):261-269, Jan 2010. PubMed ID: 19864392.
Show all entries for this paper.
Witt2017
Kristen C. Witt, Luis Castillo-Menendez, Haitao Ding, Nicole Espy, Shijian Zhang, John C. Kappes, and Joseph Sodroski. Antigenic Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Precursor Incorporated into Nanodiscs. PLoS One, 12(2):e0170672, 2017. PubMed ID: 28151945.
Show all entries for this paper.
Wu2010
Xueling Wu, Zhi-Yong Yang, Yuxing Li, Carl-Magnus Hogerkorp, William R. Schief, Michael S. Seaman, Tongqing Zhou, Stephen D. Schmidt, Lan Wu, Ling Xu, Nancy S. Longo, Krisha McKee, Sijy O'Dell, Mark K. Louder, Diane L. Wycuff, Yu Feng, Martha Nason, Nicole Doria-Rose, Mark Connors, Peter D. Kwong, Mario Roederer, Richard T. Wyatt, Gary J. Nabel, and John R. Mascola. Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 329(5993):856-861, 13 Aug 2010. PubMed ID: 20616233.
Show all entries for this paper.
Yuan2006
Wen Yuan, Jessica Bazick, and Joseph Sodroski. Characterization of the Multiple Conformational States of Free Monomeric and Trimeric Human Immunodeficiency Virus Envelope Glycoproteins after Fixation by Cross-Linker. J. Virol., 80(14):6725-6737, Jul 2006. PubMed ID: 16809278.
Show all entries for this paper.