logo image

HIV Molecular Immunology Database

Search Antibody Database

Found 2 matching records:

Displaying record number 414

Download this epitope record as JSON.

MAb ID 9284 (NEA 9284)
HXB2 Location Env(301-312)
DNA(7125..7160)
Env Epitope Map
Author Location gp120(307-318 IIIB)
Research Contact Dupont de Nemours, Wilmington, Delaware
Epitope NNTRKSIRIQRG Epitope Alignment
NNTRKSIRIQRG epitope logo
Subtype B
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site

Vaccine Details

Vaccine type inactivated HIV
Vaccine strain B clade IIIB
Vaccine component HIV-1

Notes

Showing 19 of 19 notes.

References

Showing 27 of 27 references.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Cao1997 J. Cao, N. Sullivan, E. Desjardin, C. Parolin, J. Robinson, R. Wyatt, and J. Sodroski. Replication and Neutralization of Human Immunodeficiency Virus Type 1 Lacking the V1 and V2 Variable Loops of the gp120 Envelope Glycoprotein. J. Virol., :9808-9812, 1997. An HIV-1 mutant lacking the V1-V2 loops can replicate in Jurkat cells and revertants that replicate with wild-type efficiency rapidly evolve in culture. These viruses exhibited increased neutralization susceptibility to V3 loop or CD4i MAbs, but not to sCD4 or anti-CD4BS MAbs. Thus the gp120 V1 and V2 loops protect HIV-1 from some subsets of neutralizing antibodies. PubMed ID: 9371651. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Este1998 José A. Este, Cecillia Cabrera, Dominique Schols, Peter Cherepanov, Arantxa Gutierrez, Myriam Witvrouw, Christophe Pannecouque, Zeger Debyser, Robert F. Rando, Bonaventura Clotet, Jan Desmyter, and Eric De Clercq. Human Immunodeficiency Virus Glycoprotein gp120 as the Primary Target for the Antiviral Action of AR177 (Zintevir). Mol. Pharmacol., 53(2):340-345, Feb 1998. PubMed ID: 9463493. Show all entries for this paper.

Fontenot1995 J. D. Fontenot, T. C. VanCott, B. S. Parekh, C. P. Pau, J. R. George, D. L. Birx, S. Zolla-Pazner, M. K. Gorny, and J. M. Gatewood. Presentation of HIV V3 Loop Epitopes for Enhanced Antigenicity, Immunogenicity and Diagnostic Potential. AIDS, 9:1121-1129, 1995. PubMed ID: 8519447. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.

Ivanoff1991 L. A. Ivanoff, D. J. Looney, C. McDanal, J. F. Morris, F. Wong-Staal, A. J. Langlois, S. R. Petteway, Jr., and T. J. Matthews. Alteration of HIV-1 Infectivity and Neutralization by a Single Amino Acid Replacement in the V3 Loop Domain. AIDS Res. Hum. Retroviruses, 7(7):595-603, Jul 1991. PubMed ID: 1768461. Show all entries for this paper.

McKeating1992a J. A. McKeating, J. Cordell, C. J. Dean, and P. Balfe. Synergistic Interaction between Ligands Binding to the CD4 Binding Site and V3 Domain of Human Immunodeficiency Virus Type I gp120. Virology, 191:732-742, 1992. PubMed ID: 1280382. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Okada1994 T. Okada, B. K. Patterson, P. A. Otto, and M. E. Gurney. HIV Type 1 Infection of CD4+ T-Cells Depends Critically on Basic Amino Acid Residues in the V3 Domain of Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 10:803-811, 1994. PubMed ID: 7986586. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1991 Q. J. Sattentau and J. P. Moore. Conformational Changes Induced in the Human Immunodeficiency Virus Envelope Glycoprotein by Soluble CD4 Binding. J. Exp. Med., 174:407-415, 1991. sCD4 binding to gp120 induces conformational changes within envelope oligomers. This was measured on HIV-1-infected cells by the increased binding of gp120/V3 loop specific MAbs, and on the surface of virions by increased cleavage of the V3 loop by an exogenous proteinase. PubMed ID: 1713252. Show all entries for this paper.

Sattentau1993 Q. J. Sattentau, J. P. Moore, F. Vignaux, F. Traincard, and P. Poignard. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol., 67:7383-7393, 1993. PubMed ID: 7693970. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Schonning1998 K. Schonning, A. Bolmstedt, J. Novotny, O. S. Lund, S. Olofsson, and J. E. Hansen. Induction of Antibodies against Epitopes Inaccessible on the HIV Type 1 Envelope Oligomer by Immunization with Recombinant Monomeric Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:1451-1456, 1998. PubMed ID: 9824323. Show all entries for this paper.

Skinner1988 M. A. Skinner, R. Ting, A. J. Langlois, K. J. Weinhold, H. K. Lyerly, K. Javaherian, and T. J. Matthews. Characteristics of a Neutralizing Monoclonal Antibody to the HIV Envelope Glycoprotein. AIDS Res. Hum. Retroviruses, 4:187-197, 1988. PubMed ID: 2456088. Show all entries for this paper.

Skinner1988a M. A. Skinner, A. J. Langlois, C. B. McDanal, J. S. McDougal, D. P. Bolognesi, and T. J. Matthews. Neutralizing Antibodies to an Immunodominant Envelope Sequence Do Not Prevent gp120 Binding to CD4. J. Virol., 62:4195-4200, 1988. This report was an early suggestion that there are at least two classes of biologically active antibodies to HIV: one class is isolate restricted, primarily directed to a hypervariable loop structure of gp120 and not involved in CD4 binding; the second class is directed at more conserved structures that may directly block CD4 binding. PubMed ID: 2845130. Show all entries for this paper.

Sorensen1994 A. M. M. Sorensen, C. Nielsen, M. Arendrup, H. Clausen, J. O. Nielsen, E. Osinaga, A. Roseto, and J.-E. S. Hansen. Neutralization epitopes on HIV pseudotyped with HTLV-I: Conservation of carbohydrate epitopes. J. Acquir. Immune Defic. Syndr., 7:116-123, 1994. Pseudotypes were formed with HIV and HTLV-I. MAb 9284, directed at the V3 loop of gp120, failed to inhibit the infection of CD-4 negative cells with pseudotypes, but anti-HTLV serum did inhibit infection. HIV and HTLV-I appear to induce common carbohydrate neutralizing epitopes. PubMed ID: 7507991. Show all entries for this paper.

Thali1992a M. Thali, C. Furman, D. D. Ho, J. Robinson, S. Tilley, A. Pinter, and J. Sodroski. Discontinuous, Conserved Neutralization Epitopes Overlapping the CD4-Binding Region of Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 66:5635-5641, 1992. Maps the relationship between amino acid substitutions that reduce CD4-gp120 interaction, and amino acid substitutions that reduce the binding of discontinuous epitope MAbs that inhibit CD4 binding. PubMed ID: 1380099. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Trujillo1993 J. R. Trujillo, M. F. McLane, T.-H. Lee, and M. Essex. Molecular Mimicry between the Human Immunodeficiency Virus Type 1 gp120 V3 Loop and Human Brain Proteins. J. Virol., 67:7711-7715, 1993. PubMed ID: 8230494. Show all entries for this paper.

VanCott1994 T. C. VanCott, F. R. Bethke, V. R. Polonis, M. K. Gorny, S. Zolla-Pazner, R. R. Redfield, and D. L. Birx. Dissociation Rate of Antibody-gp120 Binding Interactions Is Predictive of V3-Mediated Neutralization of HIV-1. J. Immunol., 153:449-459, 1994. Using surface plasmon resonance it was found that the rate of the dissociation of the MAb-gp120 complex, but not the association rate, correlated with MAbs ability to neutralize homologous virus (measured by 50\% inhibition of p24 production). Association constants were similar for all MAbs tested, varying less than 4-fold. Dissociation rate constants were quite variable, with 100-fold differences observed. PubMed ID: 7515931. Show all entries for this paper.

VanCott1995 T. C. VanCott, F. R. Bethke, D. S. Burke, R. R. Redfield, and D. L. Birx. Lack of Induction of Antibodies Specific for Conserved, Discontinuous Epitopes of HIV-1 Envelope Glycoprotein by Candidate AIDS Vaccines. J. Immunol., 155:4100-4110, 1995. The Ab response in both HIV-1 infected and uninfected volunteers immunized with HIV-1 rec envelope subunit vaccines (Genentech gp120IIIB, MicroGeneSys gp160IIIB, or ImmunoAG gp160IIIB) preferentially induced Abs reactive only to the denatured form of gp120. This may explain the inability of the vaccinee sera to neutralize primary HIV-1 isolates. PubMed ID: 7561123. Show all entries for this paper.

Wyatt1992 R. Wyatt, M. Thali, S. Tilley, A. Pinter, M. Posner, D. Ho, J. Robinson, and J. Sodroski. Relationship of the Human Immunodeficiency Virus Type 1 gp120 Third Variable Loop to Elements of the CD4 Binding Site. J. Virol., 66:6997-7004, 1992. This paper examines mutations which alter MAb binding and neutralization. Anti-V3 MAb 9284 has enhanced binding due to a mutation in the C4 region that is also important for CD4 binding, and anti-CD4 binding MAbs F105, 1.5e and 1125H show increased precipitation of a gp120 from which the V3 loop was deleted, relative to wild type, in RIPA buffer containing non-ionic detergents. PubMed ID: 1279195. Show all entries for this paper.


Displaying record number 487

Download this epitope record as JSON.

MAb ID 0.5β (0.5 beta, 0.5beta)
HXB2 Location Env(311-324)
DNA(7155..7196)
Env Epitope Map
Author Location gp120(316-330 HXB2)
Research Contact Shuzo Matsushita or Toshio Hattori of Kumamoto University
Epitope RGPGRAFVTIGKIG Epitope Alignment
RGPGRAFVTIGKIG epitope logo
Subtype B
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L (IIIB)
Species (Isotype) mouse(IgG1κ)
Patient  
Immunogen vaccine
Keywords anti-idiotype, antibody binding site, antibody generation, antibody interactions, binding affinity, brain/CSF, co-receptor, complement, enhancing activity, escape, mimics, neutralization, review, structure, variant cross-reactivity

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component Env

Notes

Showing 42 of 42 notes.

References

Showing 45 of 45 references.

Isolation Paper
Matsushita1988 S. Matsushita, M. Rober-Guroff, J. Rusche, A. Koito, T. Hattori, H. Hoshino, K. Javaherian, K. Takatsuki, and S. Putney. Characterization of a Human Immunodeficiency Virus neutralizing monoclonal antibody and mapping the neutralizing epitope. J. Virol., 62:2107-2114, 1988. PubMed ID: 2452899. Show all entries for this paper.

Boudet1994 F. Boudet, J. Theze, and M. Zouali. Anti-Idiotypic Antibodies to the Third Variable Domain of gp120 Induce an Anti-HIV-1 Antibody Response in Mice. Virology, 200:176-188, 1994. PubMed ID: 7510435. Show all entries for this paper.

Broder1994 C.C. Broder, P.L. Earl, D. Long, S.T. Abedon, B. Moss, and R.W. Doms. Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: Oligomer-specific and -sensitive monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A., 91:11699-11703, 1994. 35 anti-gp41 and 27 anti-gp120 murine MAbs generated by immunization with oligomeric HIV-1 IIIB envelope were studied. These MAbs tended to react with conformational epitopes. 21 of the anti-gp41 MAbs reacted preferentially with oligomeric env, while only 1 of the anti-gp120 MAbs reacted more strongly with the oligomer, and 14 of the anti-gp120 preferentially recognized monomeric env. PubMed ID: 7972127. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

DSouza1991 M. P. D'Souza, P. Durda, C. V. Hanson, G. Milman, and Collaborating Investigators. Evaluation of Monoclonal Antibodies to HIV-1 by Neutralization and Serological Assays: An International Collaboration. AIDS, 5:1061-1070, 1991. PubMed ID: 1718320. Show all entries for this paper.

Emini1992 E. A. Emini, W. A. Schleif, J. H. Nunberg, A. J. Conley, Y. Eda, S. Tokiyoshi, S. D. Putney, S. Matsushita, K. E. Cobb, C. M. Jett, J. W. Eichberg, and K. K. Murthy. Prevention of HIV-1 Infection in Chimpanzees by gp120 V3 Domain-Specific Monoclonal Antibody. Nature, 355:728-730, 1992. PubMed ID: 1741059. Show all entries for this paper.

Faiman1996 Gabriel A. Faiman, Rena Levy, Jacob Anglister, and Amnon Horovitz. Contribution of Arginine Residues in the RP135 Peptide Derived from the V3 Loop of gp120 to Its Interaction with the Fv Fragment of the 0.5beta HIV-1 Neutralizing Antibody. J. Biol. Chem., 271(23):13829-13833, 7 Jun 1996. PubMed ID: 8662780. Show all entries for this paper.

Faiman1997 G. A. Faiman and A. Horovitz. Thermodynamic Analysis of the Interaction between the 0.5beta Fv Fragment and the RP135 Peptide Antigen Derived from the V3 Loop of HIV-1 gp120. J. Biol. Chem., 272:31407-31411, 1997. PubMed ID: 9395472. Show all entries for this paper.

Fortin2000 J. F. Fortin, R. Cantin, M. G. Bergeron, and M. J. Tremblay. Interaction between Virion-Bound Host Intercellular Adhesion Molecule-1 and the High-Affinity State of Lymphocyte Function-Associated Antigen-1 on Target Cells Renders R5 and X4 Isolates of Human Immunodeficiency Virus Type 1 More Refractory to Neutralization. Virology, 268:493-503, 2000. PubMed ID: 10704357. Show all entries for this paper.

Garcia2006 Julian Garcia, Pascal Dumy, Osnat Rosen, and Jacob Anglister. Stabilization of the Biologically Active Conformation of the Principal Neutralizing Determinant of HIV-1(IIIB) Containing a cis-Proline Surrogate: 1H NMR and Molecular Modeling Study. Biochemistry, 45(13):4284-4294, 4 Apr 2006. PubMed ID: 16566603. Show all entries for this paper.

Harada2004 Shinji Harada, Keisuke Yusa, and Yosuke Maeda. Heterogeneity of Envelope Molecules Shown by Different Sensitivities to anti-V3 Neutralizing Antibody and CXCR4 Antagonist Regulates the Formation of Multiple-Site Binding of HIV-1. Microbiol. Immunol., 48(4):357-365, 2004. PubMed ID: 15107547. Show all entries for this paper.

Harada2008 Shinji Harada, Kazuaki Monde, Yuetsu Tanaka, Tetsuya Kimura, Yosuke Maeda, and Keisuke Yusa. Neutralizing Antibodies Decrease the Envelope Fluidity of HIV-1. Virology, 370(1):142-150, 5 Jan 2008. PubMed ID: 17900650. Show all entries for this paper.

Huang1997 X. Huang, J. J. Barchi, Jr., F. D. Lung, P. P. Roller, P. L. Nara, J. Muschik, and R. R. Garrity. Glycosylation Affects Both the Three-Dimensional Structure and Antibody Binding Properties of the HIV-1IIIB GP120 Peptide. Biochemistry, 36:10846-10856, 1997. Glycosylated analogues of the V3 loop of gp120 were studied using NMR and circular dichroism spectroscopies, and by AB binding properties to MAb 0.5 $\beta$. A 24-residue peptide from the HIV-1 IIIB isolate (residues 308-331) designated RP135, was glycosylated with both N- and O- linked sugars. PubMed ID: 9312273. Show all entries for this paper.

Huang2005 Chih-chin Huang, Min Tang, Mei-Yun Zhang, Shahzad Majeed, Elizabeth Montabana, Robyn L. Stanfield, Dimiter S. Dimitrov, Bette Korber, Joseph Sodroski, Ian A. Wilson, Richard Wyatt, and Peter D. Kwong. Structure of a V3-Containing HIV-1 gp120 Core. Science, 310(5750):1025-1028, 11 Nov 2005. PubMed ID: 16284180. Show all entries for this paper.

Jagodzinski1996 P. P. Jagodzinski, J. Wustner, D. Kmieciak, T. J. Wasik, A. Fertala, A. L. Sieron, M. Takahashi, T. Tsuji, T. Mimura, M. S. Fung, M. K. Gorny, M. Kloczewiak, Y. Kaneko, and D. Kozbor. Role of the V2, V3, and CD4-Binding Domains of GP120 in Curdlan Sulfate Neutralization Sensitivity of HIV-1 during Infection of T Lymphocytes. Virology, 226:217-227, 1996. PubMed ID: 8955041. Show all entries for this paper.

Jagodzinski2000 P. P. Jagodzinski and W. H. Trzeciak. Application of monoclonal antibodies to monitor the synthesis of a glycoprotein core of envelope glycoproteins of human immunodeficiency virus (HIV-1). Biomed. Pharmacother., 54:50-3, 2000. PubMed ID: 10721463. Show all entries for this paper.

Jeffs1996 S. A. Jeffs, J. McKeating, S. Lewis, H. Craft, D. Biram, P. E. Stephens, and R. L. Brady. Antigenicity of truncated forms of the human immunodeficiency virus type 1 envelope glycoprotein. J. Gen. Virol., 77:1403-1410, 1996. PubMed ID: 8757980. Show all entries for this paper.

Kawai2003 Masahiro Kawai, Lianying He, Takeshi Kawamura, Shinya Omoto, Yoichi R. Fujii, and Noriko Okada. Chimeric Human/Murine Monoclonal IgM Antibodies to HIV-1 Nef Antigen Expressed on Chronically Infected Cells. Microbiol. Immunol., 47(3):247-253, 2003. PubMed ID: 12725296. Show all entries for this paper.

Klasse1993b P. Klasse, J. A. McKeating, M. Schutten, M. S. Reitz, Jr., and M. Robert-Guroff. An Immune-Selected Point Mutation in the Transmembrane Protein of Human Immunodeficiency Virus Type 1 (HXB2-Env:Ala 582(--> Thr)) Decreases Viral Neutralization by Monoclonal Antibodies to the CD4-Binding Site. Virology, 196:332-337, 1993. PubMed ID: 8356803. Show all entries for this paper.

Maeda1992 Y. Maeda, S. Matsushita, T. Hattori, T. Murakami, and K. Takatsuki. Changes in the Reactivity and Neutralizing Activity of a Type-Specific Neutralizing Monoclonal Antibody Induced by Interaction of Soluble CD4 with gp120. AIDS Res. Hum. Retroviruses, 8:2049-2054, 1992. PubMed ID: 1493053. Show all entries for this paper.

Matsushita1992 S. Matsushita, H. Maeda, K. Kimachi, Y. Eda, Y. Maeda, T. Murakami, S. Tokiyoshi, and K. Takatsuki. Characterization of a Mouse/Human Chimeric Monoclonal Antibody (C-beta-1) to a Principal Neutralizing Domain of the Human Immunodeficiency Virus Type 1 Envelope Protein. AIDS Res. Hum. Retroviruses, 8:1107-1115, 1992. PubMed ID: 1380258. Show all entries for this paper.

McDougal1996 J. S. McDougal, M. S. Kennedy, S. L. Orloff, J. K. A. Nicholson, and T. J. Spira. Mechanisms of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralization: Irreversible Inactivation of Infectivity by Anti-HIV-1 Antibody. J. Virol., 70:5236-5245, 1996. Studies of polyclonal sera autologous virus inactivation indicates that in individuals over time, viral populations emerge that are resistant to inactivating effects of earlier sera. PubMed ID: 8764033. Show all entries for this paper.

McKeating1992a J. A. McKeating, J. Cordell, C. J. Dean, and P. Balfe. Synergistic Interaction between Ligands Binding to the CD4 Binding Site and V3 Domain of Human Immunodeficiency Virus Type I gp120. Virology, 191:732-742, 1992. PubMed ID: 1280382. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Mor2009 Amit Mor, Eugenia Segal, Brenda Mester, Boris Arshava, Osnat Rosen, Fa-Xiang Ding, Joseph Russo, Amnon Dafni, Fabian Schvartzman, Tali Scherf, Fred Naider, and Jacob Anglister. Mimicking the Structure of the V3 Epitope Bound to HIV-1 Neutralizing Antibodies. Biochemistry, 48(15):3288-3303, 21 Apr 2009. PubMed ID: 19281264. Show all entries for this paper.

Nara1990 P. L. Nara, L. Smit, N. Dunlop, W. Hatch, M. Merges, D. Waters, J. Kelliher, R. C. Gallo, P. J. Fischinger, and J. Goudsmit. Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. J. Virol., 64:3779-3791, 1990. PubMed ID: 2370681. Show all entries for this paper.

Okada1994 T. Okada, B. K. Patterson, P. A. Otto, and M. E. Gurney. HIV Type 1 Infection of CD4+ T-Cells Depends Critically on Basic Amino Acid Residues in the V3 Domain of Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 10:803-811, 1994. PubMed ID: 7986586. Show all entries for this paper.

Okada2005 Noriko Okada, Shuping Yin, Suzuka Asai, Noriaki Kimbara, Natsuki Dohi, Masato Hosokawa, Xiaoshan Wu, and Hidechika Okada. Human IgM Monoclonal Antibodies Reactive with HIV-1-Infected Cells Generated Using a Trans-Chromosome Mouse. Microbiol. Immunol., 49(5):447-459, 2005. PubMed ID: 15905607. Show all entries for this paper.

Reitz1988 M. S. Reitz, Jr., C. Wilson, C. Naugle, and M. Robert-Guroff. Generation of a Neutralization-Resistant Variant of HIV-1 Is Due to Selection for a Point Mutation in the Envelope Gene. Cell, 54:57-63, 1988. Growth of HXB2 in the constant presence of a neutralizing antiserum yielded a viral population resistant to the same serum. gp41 mutation 582 (Ala to Thr) conferred the resistant phenotype. PubMed ID: 2838179. Show all entries for this paper.

Rosen2005 Osnat Rosen, Jordan Chill, Michal Sharon, Naama Kessler, Brenda Mester, Susan Zolla-Pazner, and Jacob Anglister. Induced Fit in HIV-Neutralizing Antibody Complexes: Evidence for Alternative Conformations of the gp120 V3 Loop and the Molecular Basis for Broad Neutralization. Biochemistry, 44(19):7250-7158, 17 May 2005. PubMed ID: 15882063. Show all entries for this paper.

Sirois2007 Suzanne Sirois, Mohamed Touaibia, Kuo-Chen Chou, and Rene Roy. Glycosylation of HIV-1 gp120 V3 Loop: Towards the Rational Design of a Synthetic Carbohydrate Vaccine. Curr. Med. Chem., 14(30):3232-3242, 2007. PubMed ID: 18220757. Show all entries for this paper.

Skinner1988 M. A. Skinner, R. Ting, A. J. Langlois, K. J. Weinhold, H. K. Lyerly, K. Javaherian, and T. J. Matthews. Characteristics of a Neutralizing Monoclonal Antibody to the HIV Envelope Glycoprotein. AIDS Res. Hum. Retroviruses, 4:187-197, 1988. PubMed ID: 2456088. Show all entries for this paper.

Skinner1988a M. A. Skinner, A. J. Langlois, C. B. McDanal, J. S. McDougal, D. P. Bolognesi, and T. J. Matthews. Neutralizing Antibodies to an Immunodominant Envelope Sequence Do Not Prevent gp120 Binding to CD4. J. Virol., 62:4195-4200, 1988. This report was an early suggestion that there are at least two classes of biologically active antibodies to HIV: one class is isolate restricted, primarily directed to a hypervariable loop structure of gp120 and not involved in CD4 binding; the second class is directed at more conserved structures that may directly block CD4 binding. PubMed ID: 2845130. Show all entries for this paper.

Sperlagh1993 M. Sperlagh, K. Stefano, F. Gonzalez-Scarano, S. Liang, J. Hoxie, H. Maruyama, M. Prewett, S. Matsushito, and D. Herlyn. Monoclonal Anti-Idiotype Antibodies That Mimic the Epitope on gp120 Defined by the Anti-HIV-1 Monoclonal Antibody 0.5beta. AIDS, 7:1553-1559, 1993. PubMed ID: 7506914. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Tugarinov1999 Vitali Tugarinov, Anat Zvi, Rina Levy, and Jacob Anglister. A cis Proline Turn Linking Two Beta-Hairpin Strands in the Solution Structure of an Antibody-Bound HIV-1 IIIB V3 Peptide. Nat. Struct. Biol., 6(4):331-335, Apr 1999. PubMed ID: 10201400. Show all entries for this paper.

Tugarinov2000 V. Tugarinov, A. Zvi, R. Levy, Y. Hayek, S. Matsushita, and J. Anglister. NMR Structure of an Anti-gp120 Antibody Complex with a V3 Peptide Reveals a Surface Important for Co-Receptor Binding. Structure, 8:385-395, 2000. PubMed ID: 10801487. Show all entries for this paper.

Veronese1993 F. di Marzo Veronese, M. S. Reitz, Jr., G. Gupta, M. Robert-Guroff, C. Boyer-Thompson, A. Louie, R. C. Gallo, and P. Lusso. Loss of a Neutralizing Epitope by a Spontaneous Point Mutation in the V3 Loop of HIV-1 Isolated from an Infected Laboratory Worker. J. Biol. Chem., 268:25894-25901, 1993. The MAb M77 cannot neutralize a virus isolated from a IIIB infected lab-worker that has a single point mutation in the defined linear epitope. M77 cannot bind to the mutant native gp120, but can bind to a peptide that carries the substitution. PubMed ID: 7503990. Show all entries for this paper.

Vijh-Warrier1996 Sujata Vijh-Warrier, Abraham Pinter, William J. Honnen, and Shermaine A. Tilley. Synergistic Neutralization of Human Immunodeficiency Virus Type 1 by a Chimpanzee Monoclonal Antibody against the V2 Domain of gp120 in Combination with Monoclonal Antibodies against the V3 Loop and the CD4-Binding Site. J. Virol., 70(7):4466-4473, Jul 1996. PubMed ID: 8676471. Show all entries for this paper.

Watkins1993 B. A. Watkins, M. S. Reitz, Jr., C. A. Wilson, K. Aldrich, A. E. Davis, and M. Robert-Guroff. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways. J. Virol., 67:7493-7500, 1993. A neutralization resistance point mutation (HXB2 A281V) was studied using a variety of MAbs, and it was shown that this substitution affects a different epitope than a previously characterized neutralization escape mutant (A582T) (Reitz 1988, Wilson 1990). PubMed ID: 7693973. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Zvi1995 A. Zvi, I. Kustanovich, Y. Hayek, S. Matsushita, and J. Anglister. The Principal Neutralizing Determinant of HIV-1 Located in V3 of gp120 Forms a 12-Residue Loop by Internal Hydrophobic Interactions. FEBS Lett., 368:267-270, 1995. PubMed ID: 7543061. Show all entries for this paper.

Zvi1995a A. Zvi, I. Kustanovich, D. Feigelson, R. Levy, M. Eisenstein, S. Matsushita, P. Richalet-Secordel, M. H. Regenmortel, and J. Anglister. NMR Mapping of the Antigenic Determinant Recognized by an Anti-gp120, Human Immunodeficiency Virus Neutralizing Antibody. Eur. J. Biochem., 229:178-187, 1995. PubMed ID: 7538073. Show all entries for this paper.

Zvi1997 A. Zvi, D. J. Feigelson, Y. Hayek, and J. Anglister. Conformation of the principal neutralizing determinant of human immunodeficiency virus type 1 in complex with an anti-gp120 virus neutralizing antibody studied by two-dimensional nuclear magnetic resonance difference spectroscopy. Biochemistry, 36:8619-27, 1997. PubMed ID: 9214308. Show all entries for this paper.

Zvi2000 A. Zvi, V. Tugarinov, G. A. Faiman, A. Horovitz, and J. Anglister. A Model of a gp120 V3 Peptide in Complex with an HIV-Neutralizing Antibody Based on NMR and Mutant Cycle-Derived Constraints. Eur. J. Biochem., 267:767-779, 2000. PubMed ID: 10651813. Show all entries for this paper.


This is a legacy search page. It is deprecated, will receive no more updates, and will eventually be removed. Please use the new search pages.

Questions or comments? Contact us at immuno@lanl.gov
 
Managed by Triad National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration
Copyright Triad National Security, LLC | Disclaimer/Privacy

Dept of Health & Human Services LANL logo National Institutes of Health logo