HIV molecular immunology database

 

Search Antibody Database

Found 33 matching records:

Displaying record number 255

Download this epitope record as JSON.

MAb ID M85
HXB2 Location gp160(30-51)
DNA(6312..6377)
gp160 Epitope Map
Author Location gp120(30-51 LAI)
Research Contact Fulvia di Marzo Veronese
Epitope ATEKLWVTVYYGVPVWKEATTT Epitope Alignment
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 5 of 5 notes.

References

Showing 7 of 7 references.

Veronese1992 F. di Marzo Veronese, R. Rahman, R. Pal, C. Boyer, J. Romano, V. S. Kalyanaraman, B. C. Nair, R. C. Gallo, and M. G. Sarngadharan. Delineation of immunoreactive, conserved regions in the external envelope glycoprotein of the human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 8:1125-1132, 1992. PubMed ID: 1380259. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Koefoed2005 Klaus Koefoed, Lauge Farnaes, Meng Wang, Arne Svejgaard, Dennis R. Burton, and Henrik J. Ditzel. Molecular Characterization of the Circulating Anti-HIV-1 gp120-Specific B Cell Repertoire using Antibody Phage Display Libraries Generated from Pre-Selected HIV-1 gp120 Binding PBLs. J. Immunol. Methods, 297(1-2):187-201, Feb 2005. PubMed ID: 15777942. Show all entries for this paper.


Displaying record number 257

Download this epitope record as JSON.

MAb ID M92
HXB2 Location gp160(41-50)
DNA(6345..6374)
gp160 Epitope Map
Author Location gp120(31-50 LAI)
Research Contact Fulvia di Marzo Veronese
Epitope GVPVWKEATT Epitope Alignment
GVPVWKEATT epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) rat(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 4 of 4 references.

Veronese1992 F. di Marzo Veronese, R. Rahman, R. Pal, C. Boyer, J. Romano, V. S. Kalyanaraman, B. C. Nair, R. C. Gallo, and M. G. Sarngadharan. Delineation of immunoreactive, conserved regions in the external envelope glycoprotein of the human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 8:1125-1132, 1992. PubMed ID: 1380259. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.


Displaying record number 258

Download this epitope record as JSON.

MAb ID 4D4#85
HXB2 Location gp160(41-50)
DNA(6345..6374)
gp160 Epitope Map
Author Location gp120( LAI)
Research Contact S. Nigida and L. Arthur, NCI, Frederick, MD USA
Epitope GVPVWKEATT Epitope Alignment
GVPVWKEATT epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords antibody polyreactivity, immunotherapy

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 6 of 6 notes.

References

Showing 7 of 7 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.


Displaying record number 262

Download this epitope record as JSON.

MAb ID 133/237
HXB2 Location gp160(61-70)
DNA(6405..6434)
gp160 Epitope Map
Author Location gp120(51-70 LAI)
Epitope YDTEVHNVWA Epitope Alignment
YDTEVHNVWA epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 3 of 3 notes.

References

Showing 4 of 4 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.


Displaying record number 263

Download this epitope record as JSON.

MAb ID 133/290
HXB2 Location gp160(61-70)
DNA(6405..6434)
gp160 Epitope Map
Author Location gp120(61-70 LAI)
Research Contact M. Niedrig
Epitope YDTEVHNVWA Epitope Alignment
YDTEVHNVWA epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 11 of 11 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Wyatt1995 R. Wyatt, J. Moore, M. Accola, E. Desjardin, J. Robinson, and J. Sodroski. Involvement of the V1/V2 Variable Loop Structure in the Exposure of Human Immunodeficiency Virus Type 1 gp120 Epitopes Induced by Receptor Binding. J. Virol., 69:5723-5733, 1995. Deletions in the V1/V2 loops of gp120 resulted in the loss of the ability of sCD4 to induce binding of the MAbs 17b, 48d, and A32. A32 can induce binding of 17b and 48d; this induction does not appear to involve the V1/V2 regions. PubMed ID: 7543586. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.


Displaying record number 267

Download this epitope record as JSON.

MAb ID 4A7C6
HXB2 Location gp160(81-90)
DNA(6465..6494)
gp160 Epitope Map
Author Location gp120(81-90 LAI)
Research Contact R. Tedder
Epitope PQEVVLVNVT Epitope Alignment
PQEVVLVNVT epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 5 of 5 notes.

References

Showing 6 of 6 references.

Thiriart1989 C. Thiriart, M. Francotte, J. Cohen, C. Collignon, A. Delers, S. Kummert, C. Molitor, D. Gilles, P. Roelants, F. Van Wijnendaele, M. De Wilde, and C. Bruck. Several Antigenic Determinants Exposed on the gp120 Moiety of HIV-1 gp160 Are Hidden on the Mature gp120. J. Immunol., 143:1832-1836, 1989. PubMed ID: 2476484. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.


Displaying record number 270

Download this epitope record as JSON.

MAb ID 133/192
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(91-100 LAI)
Research Contact Matthias Niedrig
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 10 of 10 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.


Displaying record number 272

Download this epitope record as JSON.

MAb ID B2
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(91-100 LAI)
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG2b)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component gp160

Notes

Showing 3 of 3 notes.

References

Showing 5 of 5 references.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Abacioglu1994 Y. H. Abacioglu, T. R. Fouts, J. D. Laman, E. Claassen, S. H. Pincus, J. P. Moore, C. A. Roby, R. Kamin-Lewis, and G. K. Lewis. Epitope Mapping and Topology of Baculovirus-Expressed HIV-1 gp160 Determined with a Panel of Murine Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 10:371-381, 1994. Thirty MAbs were obtained from BALB/c mice immunized with rgp160 LAI expressed in baculovirus. These antibodies map to 4 domains: gp120 C1, C2, C3/V4, and the cytoplasmic tail of gp41. All epitopes were exposed on rgp160 without denaturing the protein, but 6/8 epitopes mapped in gp120 are not exposed unless the protein is denatured, showing rgp160 and rgp120 fold differently. PubMed ID: 8068416. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.


Displaying record number 284

Download this epitope record as JSON.

MAb ID T7.1
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(91-100 LAI)
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 1 of 1 note.

References

Showing 4 of 4 reference.

Akerblom1990 L. Akerblom, J. Hinkula, P.-A. Broliden, B. Makitalo, T. Fridberger, J. Rosen, M. Villacres-Eriksson, B. Morein, and B. Wahren. Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS, 4:953-960, 1990. PubMed ID: 1702001. Show all entries for this paper.

Bolmstedt1992 A. Bolmstedt, S. Olofsson, E. Sjogren-Jansson, I. Sjoblom, L. Akerblom, J.-E. S. Hansen, and S.-L. Hu. Carbohydrate Determinant NeuAc-Gal-beta(1-4) of N-Linked Glycans Modulates the Antigenic Activity of Human Immunodeficiency Virus Type 1 Glycoprotein gp120. J. Gen. Virol., 73:3009-3105, 1990. PubMed ID: 1281869. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 285

Download this epitope record as JSON.

MAb ID T9
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(gp120 91-100 LAI)
Research Contact Lennart Akerblom, Britta Wahren and Jorma Hinkula
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 5 of 5 references.

Akerblom1990 L. Akerblom, J. Hinkula, P.-A. Broliden, B. Makitalo, T. Fridberger, J. Rosen, M. Villacres-Eriksson, B. Morein, and B. Wahren. Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS, 4:953-960, 1990. PubMed ID: 1702001. Show all entries for this paper.

Bolmstedt1992 A. Bolmstedt, S. Olofsson, E. Sjogren-Jansson, I. Sjoblom, L. Akerblom, J.-E. S. Hansen, and S.-L. Hu. Carbohydrate Determinant NeuAc-Gal-beta(1-4) of N-Linked Glycans Modulates the Antigenic Activity of Human Immunodeficiency Virus Type 1 Glycoprotein gp120. J. Gen. Virol., 73:3009-3105, 1990. PubMed ID: 1281869. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.


Displaying record number 291

Download this epitope record as JSON.

MAb ID T2.1
HXB2 Location gp160(101-120)
DNA(6525..6584)
gp160 Epitope Map
Author Location gp120(101-120 LAI)
Research Contact Lennart Akerblom, Britta Wahren and Jorma Hinkula
Epitope VEQMHEDIISLWDQSLKPCV Epitope Alignment
VEQMHEDIISLWDQSLKPCV epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 1 of 1 note.

References

Showing 4 of 4 reference.

Akerblom1990 L. Akerblom, J. Hinkula, P.-A. Broliden, B. Makitalo, T. Fridberger, J. Rosen, M. Villacres-Eriksson, B. Morein, and B. Wahren. Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS, 4:953-960, 1990. PubMed ID: 1702001. Show all entries for this paper.

Bolmstedt1992 A. Bolmstedt, S. Olofsson, E. Sjogren-Jansson, I. Sjoblom, L. Akerblom, J.-E. S. Hansen, and S.-L. Hu. Carbohydrate Determinant NeuAc-Gal-beta(1-4) of N-Linked Glycans Modulates the Antigenic Activity of Human Immunodeficiency Virus Type 1 Glycoprotein gp120. J. Gen. Virol., 73:3009-3105, 1990. PubMed ID: 1281869. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 294

Download this epitope record as JSON.

MAb ID M96
HXB2 Location gp160(101-120)
DNA(6525..6584)
gp160 Epitope Map
Author Location gp120(101-120 LAI)
Research Contact Fulvia di Marzo Veronese
Epitope VEQMHEDIISLWDQSLKPCV Epitope Alignment
VEQMHEDIISLWDQSLKPCV epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) rat(IgG2a)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 2 of 2 notes.

References

Showing 3 of 3 references.

Veronese1992 F. di Marzo Veronese, R. Rahman, R. Pal, C. Boyer, J. Romano, V. S. Kalyanaraman, B. C. Nair, R. C. Gallo, and M. G. Sarngadharan. Delineation of immunoreactive, conserved regions in the external envelope glycoprotein of the human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 8:1125-1132, 1992. PubMed ID: 1380259. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 296

Download this epitope record as JSON.

MAb ID 187.2.1 (187.1)
HXB2 Location gp160(101-120)
DNA(6525..6584)
gp160 Epitope Map
Author Location gp120(101-120 LAI)
Research Contact Claudine Bruck and Clothilde Thiriart
Epitope VEQMHEDIISLWDQSLKPCV Epitope Alignment
VEQMHEDIISLWDQSLKPCV epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 4 of 4 notes.

References

Showing 5 of 5 references.

Thiriart1989 C. Thiriart, M. Francotte, J. Cohen, C. Collignon, A. Delers, S. Kummert, C. Molitor, D. Gilles, P. Roelants, F. Van Wijnendaele, M. De Wilde, and C. Bruck. Several Antigenic Determinants Exposed on the gp120 Moiety of HIV-1 gp160 Are Hidden on the Mature gp120. J. Immunol., 143:1832-1836, 1989. PubMed ID: 2476484. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 303

Download this epitope record as JSON.

MAb ID 135/9 (87-135/9)
HXB2 Location gp160(111-120)
DNA(6555..6584)
gp160 Epitope Map
Author Location gp120(111-120 LAI)
Research Contact Matthias Niedrig
Epitope LWDQSLKPCV Epitope Alignment
LWDQSLKPCV epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 9 of 9 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Kropelin1998 M. Kropelin, C. Susal, V. Daniel, and G. Opelz. Inhibition of HIV-1 rgp120 Binding to CD4+ T Cells by Monoclonal Antibodies Directed against the gp120 C1 or C4 Region. Immunol. Lett., 63:19-25, 1998. PubMed ID: 9719434. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.


Displaying record number 312

Download this epitope record as JSON.

MAb ID 6D5
HXB2 Location gp160(122-141)
DNA(6588..6647)
gp160 Epitope Map
Author Location gp120(122-141 LAI)
Research Contact S. Nigida and L. Arthur, NCI, Frederick, MD USA
Epitope LTPLCVSLKCTDLKNDTNTN Epitope Alignment
LTPLCVSLKCTDLKNDTNTN epitope logo
Subtype B
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 1 of 1 note.

References

Showing 2 of 2 reference.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 322

Download this epitope record as JSON.

MAb ID BAT085 (BAT-085)
HXB2 Location gp160(171-180)
DNA(6735..6764)
gp160 Epitope Map
Author Location gp120(170-180 IIIB)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope KEYAFFYKLD Epitope Alignment
KEYAFFYKLD epitope logo
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type inactivated HIV
Vaccine strain B clade IIIB
Vaccine component HIV-1

Notes

Showing 13 of 13 notes.

References

Showing 18 of 18 references.

Isolation Paper
Fung1992 M. S. C. Fung, C. R. Y. Sun, W. L. Gordon, R.-S. Liou, T. W. Chang, W. N. C. Sun, E. S. Daar, and D. D. Ho. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120. J. Virol., 66:848-856, 1992. Two anti-envelope V2 antibodies were raised that neutralize virus in either a conformation dependent (G3-136) or conformation independent (BAT085) manner. G3-136 has diminished reactivity with deglycosylation or DTT reduced gp120, and sCD4 inhibits binding in a competition assay; BAT085 is not sensitive to these alterations in gp120. PubMed ID: 1370558. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

DSouza1994 M. P. D'Souza, S. J. Geyer, C. V. Hanson, R. M. Hendry, G. Milman, and Collaborating Investigators. Evaluation of Monoclonal Antibodies to HIV-1 Envelope by Neutralization and Binding Assays: An International Collaboration. AIDS, 8:169-181, 1994. PubMed ID: 7519019. Show all entries for this paper.

Fung1987 M. S. C. Fung, C. R. Y. Sun, N.-C. Sun, N. T. Chang, and T.-W. Chang. Monoclonal Antibodies That Neutralize HIV-1 Virions and Inhibit Syncytium Formation by Infected Cells. Biotechnology, 5:940-947, 1987. Show all entries for this paper.

Gorny1994 M. K. Gorny, J. P. Moore, A. J. Conley, S. Karwowska, J. Sodroski, C. Williams, S. Burda, L. J. Boots, and S. Zolla-Pazner. Human Anti-V2 Monoclonal Antibody That Neutralizes Primary but Not Laboratory Isolates of Human Immunodeficiency Virus Type 1. J. Virol., 68:8312-8320, 1994. Detailed characterization of the MAb 697-D. PubMed ID: 7525987. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1993b J. P. Moore, Q. J. Sattentau, H. Yoshiyama, M. Thali, M. Charles, N. Sullivan, S.-W. Poon, M. S. Fung, F. Traincard, M. Pinkus, G. Robey, J. E. Robinson, D. D. Ho, and J. Sodroski. Probing the Structure of the V2 Domain of Human Immunodeficiency Virus Type 1 Surface Glycoprotein gp120 with a Panel of Eight Monoclonal Antibodies: Human Immune Response to the V1 and V2 domains. J. Virol., 67:6136-6151, 1993. PubMed ID: 7690418. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Pirofski1993 L.-A. Pirofski, E. K. Thomas, and M. D. Scharff. Variable region gene utilization and mutation in a group of neutralizing murine anti-human immunodeficiency virus type 1 principal neutralizing determinant antibodies. AIDS Res. Hum. Retroviruses, 9:41-49, 1993. Observed restricted subset of murine V heavy and light chain gene elements in a set of 5 antibodies that bind to the tip of the V3 loop. PubMed ID: 7678971. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Wu1995 Z. Wu, S. C. Kayman, W. Honnen, K. Revesz, H. Chen, S. V. Warrier, S. A. Tilley, J. McKeating, C. Shotton, and A. Pinter. Characterization of Neutralization Epitopes in the V2 Region of Human Immunodeficiency Virus Type 1 gp120: Role of Glycosylation in the Correct Folding of the V1/V2 Domain. J. Virol., 69:2271-2278, 1995. Most epitopes based only on numbering. PubMed ID: 7533854. Show all entries for this paper.

Yoshiyama1994 H. Yoshiyama, H.-M. Mo, J. P. Moore, and D. D. Ho. Characterization of Mutants of Human Immunodeficiency Virus Type 1 That Have Escaped Neutralization by Monoclonal Antibody G3-4 to the gp120 V2 Loop. J. Virol., 68:974-978, 1994. MAb G3-4 binds a conformationally sensitive epitope in the V2 loop of HIV-1 RF. RF was cultured in the presence of G3-4 to select for neutralization resistance. Three independent experiments yielded escape mutants, and sequencing revealed two V2 mutations to be responsible for the neutralization escape phenotype, 177 Y/H and 179 L/P. Experimental introduction of the 179 P substitution resulted in non-viable virus, and 177 H confirmed the resistance phenotype. PubMed ID: 7507188. Show all entries for this paper.


Displaying record number 350

Download this epitope record as JSON.

MAb ID 322-151
HXB2 Location gp160(211-221)
DNA(6855..6887)
gp160 Epitope Map
Author Location gp120(201-220 LAI)
Research Contact G. Robey, Abbot Labs
Epitope EPIPIHYCAPA Epitope Alignment
EPIPIHYCAPA epitope logo
Subtype B
Ab Type  
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 2 of 2 notes.

References

Showing 3 of 3 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.


Displaying record number 354

Download this epitope record as JSON.

MAb ID J1
HXB2 Location gp160(222-231)
DNA(6888..6917)
gp160 Epitope Map
Author Location gp120(222-231 LAI)
Research Contact J. Hoxie, U. Penn.
Epitope GFAILKCNNK Epitope Alignment
GFAILKCNNK epitope logo
Subtype B
Ab Type  
Neutralizing  
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type peptide
Vaccine strain B clade LAI

Notes

Showing 4 of 4 notes.

References

Showing 4 of 4 references.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 357

Download this epitope record as JSON.

MAb ID MF169.1
HXB2 Location gp160(252-261)
DNA(6978..7007)
gp160 Epitope Map
Author Location gp120(242-261 LAI)
Epitope RPVVSTQLLL Epitope Alignment
RPVVSTQLLL epitope logo
Subtype B
Ab Type  
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 1 of 1 note.

References

Showing 3 of 3 reference.

Thiriart1989 C. Thiriart, M. Francotte, J. Cohen, C. Collignon, A. Delers, S. Kummert, C. Molitor, D. Gilles, P. Roelants, F. Van Wijnendaele, M. De Wilde, and C. Bruck. Several Antigenic Determinants Exposed on the gp120 Moiety of HIV-1 gp160 Are Hidden on the Mature gp120. J. Immunol., 143:1832-1836, 1989. PubMed ID: 2476484. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 358

Download this epitope record as JSON.

MAb ID MF170.1
HXB2 Location gp160(252-261)
DNA(6978..7007)
gp160 Epitope Map
Author Location gp120(242-261 LAI)
Epitope RPVVSTQLLL Epitope Alignment
RPVVSTQLLL epitope logo
Subtype B
Ab Type  
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 1 of 1 note.

References

Showing 3 of 3 reference.

Thiriart1989 C. Thiriart, M. Francotte, J. Cohen, C. Collignon, A. Delers, S. Kummert, C. Molitor, D. Gilles, P. Roelants, F. Van Wijnendaele, M. De Wilde, and C. Bruck. Several Antigenic Determinants Exposed on the gp120 Moiety of HIV-1 gp160 Are Hidden on the Mature gp120. J. Immunol., 143:1832-1836, 1989. PubMed ID: 2476484. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 364

Download this epitope record as JSON.

MAb ID M89
HXB2 Location gp160(252-271)
DNA(6978..7037)
gp160 Epitope Map
Author Location gp120(252-271 LAI)
Research Contact Fulvia di Marzo Veronese
Epitope RPVVSTQLLLNGSLAEEEVV Epitope Alignment
RPVVSTQLLLNGSLAEEEVV epitope logo
Subtype B
Ab Type gp120 C2
Neutralizing  
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 4 of 4 references.

Veronese1992 F. di Marzo Veronese, R. Rahman, R. Pal, C. Boyer, J. Romano, V. S. Kalyanaraman, B. C. Nair, R. C. Gallo, and M. G. Sarngadharan. Delineation of immunoreactive, conserved regions in the external envelope glycoprotein of the human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 8:1125-1132, 1992. PubMed ID: 1380259. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.


Displaying record number 376

Download this epitope record as JSON.

MAb ID 110.E
HXB2 Location gp160(262-281)
DNA(7008..7067)
gp160 Epitope Map
Author Location gp120(262-281 LAI)
Research Contact F. Traincard
Epitope NGSLAEEEVVIRSVNFTDNA Epitope Alignment
NGSLAEEEVVIRSVNFTDNA epitope logo
Subtype B
Ab Type gp120 C2
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 2 of 2 notes.

References

Showing 3 of 3 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.


Displaying record number 377

Download this epitope record as JSON.

MAb ID 110.C
HXB2 Location gp160(271-280)
DNA(7035..7064)
gp160 Epitope Map
Author Location gp120(271-280 LAI)
Research Contact F. Traincard, Hybridolabs, Institut Pasteur
Epitope VIRSVNFTDN Epitope Alignment
VIRSVNFTDN epitope logo
Subtype B
Ab Type gp120 C2
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 4 of 4 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Valenzuela1998 A. Valenzuela, J. Blanco, B. Krust, R. Franco, and A. G. Hovanessian. Neutralizing Antibodies against the V3 Loop of Human Immunodeficiency Type 1 gp120 Block the CD4-Dependent and Independent Binding of the Virus to Cells. J. Virol., 71:8289-8298, 1998. PubMed ID: 9343181. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.


Displaying record number 525

Download this epitope record as JSON.

MAb ID C12
HXB2 Location gp160(361-381)
DNA(7305..7367)
gp160 Epitope Map
Author Location gp120(362-381 LAI)
Research Contact George Lewis
Epitope FKQSSGGDPEIVTHSFNCGGE Epitope Alignment
Subtype B
Ab Type gp120 CD4i, gp120 V4
Neutralizing  
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody sequence, co-receptor, review

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component gp160

Notes

Showing 8 of 8 notes.

References

Showing 9 of 9 references.

Abacioglu1994 Y. H. Abacioglu, T. R. Fouts, J. D. Laman, E. Claassen, S. H. Pincus, J. P. Moore, C. A. Roby, R. Kamin-Lewis, and G. K. Lewis. Epitope Mapping and Topology of Baculovirus-Expressed HIV-1 gp160 Determined with a Panel of Murine Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 10:371-381, 1994. Thirty MAbs were obtained from BALB/c mice immunized with rgp160 LAI expressed in baculovirus. These antibodies map to 4 domains: gp120 C1, C2, C3/V4, and the cytoplasmic tail of gp41. All epitopes were exposed on rgp160 without denaturing the protein, but 6/8 epitopes mapped in gp120 are not exposed unless the protein is denatured, showing rgp160 and rgp120 fold differently. PubMed ID: 8068416. Show all entries for this paper.

Choe2003 Hyeryun Choe, Wenhui Li, Paulette L. Wright, Natalya Vasilieva, Miro Venturi, Chih-Chin Huang, Christoph Grundner, Tatyana Dorfman, Michael B. Zwick, Liping Wang, Eric S. Rosenberg, Peter D. Kwong, Dennis R. Burton, James E. Robinson, Joseph G. Sodroski, and Michael Farzan. Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 114(2):161-170, 25 Jul 2003. PubMed ID: 12887918. Show all entries for this paper.

Dorfman2006 Tatyana Dorfman, Michael J. Moore, Alexander C. Guth, Hyeryun Choe, and Michael Farzan. A Tyrosine-Sulfated Peptide Derived from the Heavy-Chain CDR3 Region of an HIV-1-Neutralizing Antibody Binds gp120 and Inhibits HIV-1 Infection. J. Biol. Chem., 281(39):28529-28535, 29 Sep 2006. PubMed ID: 16849323. Show all entries for this paper.

Lin2007 George Lin and Peter L. Nara. Designing Immunogens to Elicit Broadly Neutralizing Antibodies to the HIV-1 Envelope Glycoprotein. Curr. HIV Res., 5(6):514-541, Nov 2007. PubMed ID: 18045109. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Gorny2009 Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295. Show all entries for this paper.

Liao2013a Hongyan Liao, Jun-tao Guo, Miles D. Lange, Run Fan, Michael Zemlin, Kaihong Su, Yongjun Guan, and Zhixin Zhang. Contribution of V(H) Replacement Products to the Generation of Anti-HIV Antibodies. Clin. Immunol., 146(1):46-55, Jan 2013. PubMed ID: 23220404. Show all entries for this paper.


Displaying record number 561

Download this epitope record as JSON.

MAb ID M91
HXB2 Location gp160(461-470)
DNA(7605..7634)
gp160 Epitope Map
Author Location gp120(451-470 LAI)
Research Contact Fulvia di Marzo Veronese
Epitope SNNESEIFRL Epitope Alignment
SNNESEIFRL epitope logo
Subtype B
Ab Type gp120 V5-C5
Neutralizing  
Species (Isotype) rat(IgG2a)
Patient  
Immunogen vaccine
Keywords antibody interactions

Vaccine Details

Vaccine type protein
Vaccine component Env

Notes

Showing 7 of 7 notes.

References

Showing 8 of 8 references.

Veronese1992 F. di Marzo Veronese, R. Rahman, R. Pal, C. Boyer, J. Romano, V. S. Kalyanaraman, B. C. Nair, R. C. Gallo, and M. G. Sarngadharan. Delineation of immunoreactive, conserved regions in the external envelope glycoprotein of the human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 8:1125-1132, 1992. PubMed ID: 1380259. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 562

Download this epitope record as JSON.

MAb ID CRA1 (CRA-1, CRA1, ARP 323, ARP323)
HXB2 Location gp160(461-470)
DNA(7605..7634)
gp160 Epitope Map
Author Location gp120(451-470 LAI)
Research Contact M. Page, NIBSC, UK
Epitope SNNESEIFRL Epitope Alignment
SNNESEIFRL epitope logo
Subtype B
Ab Type gp120 V5-C5
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody interactions

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 9 of 9 notes.

References

Showing 8 of 8 references.

Koefoed2005 Klaus Koefoed, Lauge Farnaes, Meng Wang, Arne Svejgaard, Dennis R. Burton, and Henrik J. Ditzel. Molecular Characterization of the Circulating Anti-HIV-1 gp120-Specific B Cell Repertoire using Antibody Phage Display Libraries Generated from Pre-Selected HIV-1 gp120 Binding PBLs. J. Immunol. Methods, 297(1-2):187-201, Feb 2005. PubMed ID: 15777942. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Vincent2012 Nadine Vincent and Etienne Malvoisin. Ability of Antibodies Specific to the HIV-1 Envelope Glycoprotein to Block the Fusion Inhibitor T20 in a Cell-Cell Fusion Assay. Immunobiology, 217(10):943-950, Oct 2012. PubMed ID: 22387075. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.


Displaying record number 563

Download this epitope record as JSON.

MAb ID 9301
HXB2 Location gp160(471-490)
DNA(7635..7694)
gp160 Epitope Map
Author Location gp120(471-490 LAI)
Research Contact Dupont, commercial
Epitope GGGDMRDNWRSELYKYKVVK Epitope Alignment
GGGDMRDNWRSELYKYKVVK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 5 of 5 references.

Skinner1988 M. A. Skinner, R. Ting, A. J. Langlois, K. J. Weinhold, H. K. Lyerly, K. Javaherian, and T. J. Matthews. Characteristics of a Neutralizing Monoclonal Antibody to the HIV Envelope Glycoprotein. AIDS Res. Hum. Retroviruses, 4:187-197, 1988. PubMed ID: 2456088. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Wagner1996 R. Wagner, L. Deml, R. Schirmbeck, M. Niedrig, J. Reimann, and H. Wolf. Construction, Expression, and Immunogenicity of Chimeric HIV-1 Virus-Like Particles. Virology, 220:128-140, 1996. PubMed ID: 8659105. Show all entries for this paper.


Displaying record number 567

Download this epitope record as JSON.

MAb ID 1C1
HXB2 Location gp160(471-490)
DNA(7635..7694)
gp160 Epitope Map
Author Location gp120(471-490 LAI)
Research Contact Repligen Inc, Cambridge, MA, commercial
Epitope GGGDMRDNWRSELYKYKVVK Epitope Alignment
GGGDMRDNWRSELYKYKVVK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords antibody interactions

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 5 of 5 notes.

References

Showing 5 of 5 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

VanCott1995 T. C. VanCott, F. R. Bethke, D. S. Burke, R. R. Redfield, and D. L. Birx. Lack of Induction of Antibodies Specific for Conserved, Discontinuous Epitopes of HIV-1 Envelope Glycoprotein by Candidate AIDS Vaccines. J. Immunol., 155:4100-4110, 1995. The Ab response in both HIV-1 infected and uninfected volunteers immunized with HIV-1 rec envelope subunit vaccines (Genentech gp120IIIB, MicroGeneSys gp160IIIB, or ImmunoAG gp160IIIB) preferentially induced Abs reactive only to the denatured form of gp120. This may explain the inability of the vaccinee sera to neutralize primary HIV-1 isolates. PubMed ID: 7561123. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 568

Download this epitope record as JSON.

MAb ID B221 (221)
HXB2 Location gp160(471-490)
DNA(7635..7694)
gp160 Epitope Map
Author Location gp120(471-490 LAI)
Research Contact Rod Daniels
Epitope GGGDMRDNWRSELYKYKVVK Epitope Alignment
GGGDMRDNWRSELYKYKVVK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) mouse(IgG1κ)
Patient  
Immunogen vaccine
Keywords antibody interactions, dendritic cells, neutralization

Vaccine Details

Vaccine type protein
Vaccine strain B clade NL43
Vaccine component gp160

Notes

Showing 8 of 8 notes.

References

Showing 7 of 7 references.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Bristow1994 R. G. W. Bristow, A. R. Douglas, J. J. Skehel, and R. S Daniels. Analysis of murine antibody responses to baculovirus-expressed human immunodeficiency virus type 1 envelope glycoproteins. J. Gen. Virol., 75:2089-2095, 1994. BALB/c mice were immunized with baculovirus expressed gp160 or gp120, and 15 MAbs were generated. No MAbs generated in this study neutralized reference strains, using a tetrazolium-based cytotoxicity assay to test for neutralization. Ten of the Mabs were mapped by peptide ELISA, and seven reacted with the C1 region, one with V2, one with V4, and one with the C-terminal end. PubMed ID: 7519249. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Holl2006 Vincent Holl, Maryse Peressin, Thomas Decoville, Sylvie Schmidt, Susan Zolla-Pazner, Anne-Marie Aubertin, and Christiane Moog. Nonneutralizing Antibodies Are Able To Inhibit Human Immunodeficiency Virus Type 1 Replication in Macrophages and Immature Dendritic Cells. J. Virol., 80(12):6177-6181, Jun 2006. PubMed ID: 16731957. Show all entries for this paper.

Billington2007 J. Billington, T. P. Hickling, G. H. Munro, C. Halai, R. Chung, G. G. Dodson, and R. S. Daniels. Stability of a Receptor-Binding Active Human Immunodeficiency Virus Type 1 Recombinant gp140 Trimer Conferred by Intermonomer Disulfide Bonding of the V3 Loop: Differential Effects of Protein Disulfide Isomerase on CD4 and Coreceptor Binding. J. Virol., 81(9):4604-4614, May 2007. PubMed ID: 17301129. Show all entries for this paper.

Vincent2012 Nadine Vincent and Etienne Malvoisin. Ability of Antibodies Specific to the HIV-1 Envelope Glycoprotein to Block the Fusion Inhibitor T20 in a Cell-Cell Fusion Assay. Immunobiology, 217(10):943-950, Oct 2012. PubMed ID: 22387075. Show all entries for this paper.


Displaying record number 569

Download this epitope record as JSON.

MAb ID 660-178
HXB2 Location gp160(471-490)
DNA(7635..7694)
gp160 Epitope Map
Author Location gp120(471-490 LAI)
Research Contact G. Robey, Abbott Labs
Epitope GGGDMRDNWRSELYKYKVVK Epitope Alignment
GGGDMRDNWRSELYKYKVVK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 2 of 2 notes.

References

Showing 2 of 2 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.


Displaying record number 580

Download this epitope record as JSON.

MAb ID RV110026
HXB2 Location gp160(491-500)
DNA(7695..7724)
gp160 Epitope Map
Author Location gp120(491-500 LAI)
Research Contact Commercial, Olympus Inc
Epitope IEPLGVAPTK Epitope Alignment
IEPLGVAPTK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) human
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type peptide
Vaccine strain B clade LAI

Notes

Showing 2 of 2 notes.

References

Showing 3 of 3 references.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.


Displaying record number 707

Download this epitope record as JSON.

MAb ID C11 (c11)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, LA
Epitope (Discontinuous epitope)
Ab Type gp120 C1-C5, gp120 CD4i cluster A
Neutralizing  
Species (Isotype) human(IgG)
Patient  
Immunogen HIV-1 infection
Keywords ADCC, antibody binding site, antibody generation, antibody interactions, assay or method development, binding affinity, brain/CSF, co-receptor, HAART, ART, neutralization, polyclonal antibodies, review, structure, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity

Notes

Showing 46 of 46 notes.

References

Showing 47 of 47 references.

Basmaciogullar2002 Stéphane Basmaciogullari, Gregory J. Babcock, Donald Van Ryk, Woj Wojtowicz, and Joseph Sodroski. Identification of Conserved and Variable Structures in the Human Immunodeficiency Virus gp120 Glycoprotein of Importance for CXCR4 Binding. J. Virol., 76(21):10791-800, Nov 2002. PubMed ID: 12368322. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley2000 J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724. Show all entries for this paper.

Bowley2007 D. R. Bowley, A. F. Labrijn, M. B. Zwick, and D. R. Burton. Antigen Selection from an HIV-1 Immune Antibody Library Displayed on Yeast Yields Many Novel Antibodies Compared to Selection from the Same Library Displayed on Phage. Protein Eng. Des. Sel., 20(2):81-90, Feb 2007. PubMed ID: 17242026. Show all entries for this paper.

DeVico2007 Anthony DeVico, Timothy Fouts, George K. Lewis, Robert C. Gallo, Karla Godfrey, Manhattan Charurat, Ilia Harris, Lindsey Galmin, and Ranajit Pal. Antibodies to CD4-Induced Sites in HIV gp120 Correlate with the Control of SHIV Challenge in Macaques Vaccinated with Subunit Immunogens. Proc. Natl. Acad. Sci. U.S.A., 104(44):17477-17482, 30 Oct 2007. PubMed ID: 17956985. Show all entries for this paper.

Finzi2010 Andrés Finzi, Beatriz Pacheco, Xin Zeng, Young Do Kwon, Peter D. Kwong, and Joseph Sodroski. Conformational Characterization of Aberrant Disulfide-Linked HIV-1 gp120 Dimers Secreted from Overexpressing Cells. J Virol Methods, 168(1-2):155-161, Sep 2010. PubMed ID: 20471426. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Gohain2015 Neelakshi Gohain, William D. Tolbert, Priyamvada Acharya, Lei Yu, Tongyun Liu, Pingsen Zhao, Chiara Orlandi, Maria L. Visciano, Roberta Kamin-Lewis, Mohammad M. Sajadi, Loïc Martin, James E. Robinson, Peter D. Kwong, Anthony L. DeVico, Krishanu Ray, George K. Lewis, and Marzena Pazgier. Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. J. Virol., 89(17):8840-8854, Sep 2015. PubMed ID: 26085162. Show all entries for this paper.

Grundner2002 Christoph Grundner, Tajib Mirzabekov, Joseph Sodroski, and Richard Wyatt. Solid-Phase Proteoliposomes Containing Human Immunodeficiency Virus Envelope Glycoproteins. J. Virol., 76(7):3511-3521, Apr 2002. PubMed ID: 11884575. Show all entries for this paper.

Guan2013 Yongjun Guan, Marzena Pazgier, Mohammad M. Sajadi, Roberta Kamin-Lewis, Salma Al-Darmarki, Robin Flinko, Elena Lovo, Xueji Wu, James E. Robinson, Michael S. Seaman, Timothy R. Fouts, Robert C. Gallo, Anthony L. DeVico, and George K. Lewis. Diverse Specificity and Effector Function Among Human Antibodies to HIV-1 Envelope Glycoprotein Epitopes Exposed by CD4 Binding. Proc. Natl. Acad. Sci. U.S.A., 110(1):E69-E78, 2 Jan 2013. PubMed ID: 23237851. Show all entries for this paper.

Haynes2005 Barton F. Haynes, Judith Fleming, E. William St. Clair, Herman Katinger, Gabriela Stiegler, Renate Kunert, James Robinson, Richard M. Scearce, Kelly Plonk, Herman F. Staats, Thomas L. Ortel, Hua-Xin Liao, and S. Munir Alam. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 308(5730):1906-1908, 24 Jun 2005. Comment in Science 2005 Jun 24;308(5730):1878-9. PubMed ID: 15860590. Show all entries for this paper.

Joubert2010 Marisa K. Joubert, Nichole Kinsley, Alexio Capovilla, B. Trevor Sewell, Mohamed A. Jaffer, and Makobetsa Khati. A Modeled Structure of an Aptamer-gp120 Complex Provides Insight into the Mechanism of HIV-1 Neutralization. Biochemistry, 49(28):5880-5890, 20 Jul 2010. PubMed ID: 20527993. Show all entries for this paper.

Kim2005 Mikyung Kim, Zhi-Song Qiao, David C. Montefiori, Barton F. Haynes, Ellis L. Reinherz, and Hua-Xin Liao. Comparison of HIV Type 1 ADA gp120 Monomers Versus gp140 Trimers as Immunogens for the Induction of Neutralizing Antibodies. AIDS Res. Hum. Retroviruses, 21(1):58-67, Jan 2005. PubMed ID: 15665645. Show all entries for this paper.

Kwon2012 Young Do Kwon, Andrés Finzi, Xueling Wu, Cajetan Dogo-Isonagie, Lawrence K. Lee, Lucas R. Moore, Stephen D. Schmidt, Jonathan Stuckey, Yongping Yang, Tongqing Zhou, Jiang Zhu, David A. Vicic, Asim K. Debnath, Lawrence Shapiro, Carole A. Bewley, John R. Mascola, Joseph G. Sodroski, and Peter D. Kwong. Unliganded HIV-1 gp120 Core Structures Assume the CD4-Bound Conformation with Regulation by Quaternary Interactions and Variable Loops. Proc. Natl. Acad. Sci. U.S.A., 109(15):5663-5668, 10 Apr 2012. PubMed ID: 22451932. Show all entries for this paper.

Kwong2002 Peter D. Kwong, Michael L. Doyle, David J. Casper, Claudia Cicala, Stephanie A. Leavitt, Shahzad Majeed, Tavis D. Steenbeke, Miro Venturi, Irwin Chaiken, Michael Fung, Hermann Katinger, Paul W. I. H. Parren, James Robinson, Donald Van Ryk, Liping Wang, Dennis R. Burton, Ernesto Freire, Richard Wyatt, Joseph Sodroski, Wayne A. Hendrickson, and James Arthos. HIV-1 Evades Antibody-Mediated Neutralization through Conformational Masking of Receptor-Binding Sites. Nature, 420(6916):678-682, 12 Dec 2002. Comment in Nature. 2002 Dec 12;420(6916):623-4. PubMed ID: 12478295. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Moore2006 Penny L. Moore, Emma T. Crooks, Lauren Porter, Ping Zhu, Charmagne S. Cayanan, Henry Grise, Paul Corcoran, Michael B. Zwick, Michael Franti, Lynn Morris, Kenneth H. Roux, Dennis R. Burton, and James M. Binley. Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. J. Virol., 80(5):2515-2528, Mar 2006. PubMed ID: 16474158. Show all entries for this paper.

Ohagen2003 Asa Ohagen, Amy Devitt, Kevin J. Kunstman, Paul R. Gorry, Patrick P. Rose, Bette Korber, Joann Taylor, Robert Levy, Robert L. Murphy, Steven M. Wolinsky, and Dana Gabuzda. Genetic and Functional Analysis of Full-Length Human Immunodeficiency Virus Type 1 env Genes Derived from Brain and Blood of Patients with AIDS. J. Virol., 77(22):12336-12345, Nov 2003. PubMed ID: 14581570. Show all entries for this paper.

Pacheco2008 Beatriz Pacheco, Stephane Basmaciogullari, Jason A. Labonte, Shi-Hua Xiang, and Joseph Sodroski. Adaptation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins to New World Monkey Receptors. J. Virol., 82(1):346-357, Jan 2008. PubMed ID: 17959679. Show all entries for this paper.

Pancera2005 Marie Pancera and Richard Wyatt. Selective Recognition of Oligomeric HIV-1 Primary Isolate Envelope Glycoproteins by Potently Neutralizing Ligands Requires Efficient Precursor Cleavage. Virology, 332(1):145-156, 5 Feb 2005. PubMed ID: 15661147. Show all entries for this paper.

Pancera2005a Marie Pancera, Jacob Lebowitz, Arne Schön, Ping Zhu, Ernesto Freire, Peter D. Kwong, Kenneth H. Roux, Joseph Sodroski, and Richard Wyatt. Soluble Mimetics of Human Immunodeficiency Virus Type 1 Viral Spikes Produced by Replacement of the Native Trimerization Domain with a Heterologous Trimerization Motif: Characterization and Ligand Binding Analysis. J. Virol., 79(15):9954-9969, Aug 2005. PubMed ID: 16014956. Show all entries for this paper.

Pancera2010a Marie Pancera, Shahzad Majeed, Yih-En Andrew Ban, Lei Chen, Chih-chin Huang, Leopold Kong, Young Do Kwon, Jonathan Stuckey, Tongqing Zhou, James E. Robinson, William R. Schief, Joseph Sodroski, Richard Wyatt, and Peter D. Kwong. Structure of HIV-1 gp120 with gp41-Interactive Region Reveals Layered Envelope Architecture and Basis of Conformational Mobility. Proc. Natl. Acad. Sci. U.S.A., 107(3):1166-1171, 19 Jan 2010. PubMed ID: 20080564. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Pollara2013 Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Marzena Pazgier, Barton F. Haynes, and Guido Ferrari. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity (ADCC) Responses. Curr. HIV Res., 11(5):378-387, Jul 2013. PubMed ID: 24191939. Show all entries for this paper.

Raja2003 Aarti Raja, Miro Venturi, Peter Kwong, and Joseph Sodroski. CD4 Binding Site Antibodies Inhibit Human Immunodeficiency Virus gp120 Envelope Glycoprotein Interaction with CCR5. J. Virol., 77(1):713-718, Jan 2003. PubMed ID: 12477875. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.

Robinson2005 James E. Robinson, Debra Holton Elliott, Effie A. Martin, Kathryne Micken, and Eric S. Rosenberg. High Frequencies of Antibody Responses to CD4 Induced Epitopes in HIV Infected Patients Started on HAART during Acute Infection. Hum Antibodies, 14(3-4):115-121, 2005. PubMed ID: 16720981. Show all entries for this paper.

Sajadi2012 Mohammad M. Sajadi, George K. Lewis, Michael S. Seaman, Yongjun Guan, Robert R. Redfield, and Anthony L. DeVico. Signature Biochemical Properties of Broadly Cross-Reactive HIV-1 Neutralizing Antibodies in Human Plasma. J. Virol., 86(9):5014-5025, May 2012. PubMed ID: 22379105. Show all entries for this paper.

Schiffner2016 Torben Schiffner, Natalia de Val, Rebecca A. Russell, Steven W. de Taeye, Alba Torrents de la Peña, Gabriel Ozorowski, Helen J. Kim, Travis Nieusma, Florian Brod, Albert Cupo, Rogier W. Sanders, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J. Virol., 90(2):813-828, 28 Oct 2015. PubMed ID: 26512083. Show all entries for this paper.

Schiffner2018 Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590. Show all entries for this paper.

Selvarajah2005 Suganya Selvarajah, Bridget Puffer, Ralph Pantophlet, Mansun Law, Robert W. Doms, and Dennis R. Burton. Comparing Antigenicity and Immunogenicity of Engineered gp120. J. Virol., 79(19):12148-12163, Oct 2005. PubMed ID: 16160142. Show all entries for this paper.

Steckbeck2010 Jonathan D. Steckbeck, Chengqun Sun, Timothy J. Sturgeon, and Ronald C. Montelaro. Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes. PLoS One, 5(12):e15261, 2010. PubMed ID: 21151874. Show all entries for this paper.

Sullivan1998 N. Sullivan, Y. Sun, Q. Sattentau, M. Thali, D. Wu, G. Denisova, J. Gershoni, J. Robinson, J. Moore, and J. Sodroski. CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. J. Virol., 72:4694-4703, 1998. A study of the sCD4 inducible MAb 17bi, and the MAb CG10 that recognizes a gp120-CD4 complex. These epitopes are minimally accessible upon attachment of gp120 to the cell. The CD4-binding induced changes in gp120 were studied, exploring the sequestering of chemokine receptor binding sites from the humoral response. PubMed ID: 9573233. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Veillette2014 Maxime Veillette, Anik Désormeaux, Halima Medjahed, Nour-Elhouda Gharsallah, Mathieu Coutu, Joshua Baalwa, Yongjun Guan, George Lewis, Guido Ferrari, Beatrice H. Hahn, Barton F. Haynes, James E. Robinson, Daniel E. Kaufmann, Mattia Bonsignori, Joseph Sodroski, and Andres Finzi. Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity. J. Virol., 88(5):2633-2644, Mar 2014. PubMed ID: 24352444. Show all entries for this paper.

vonBredow2016 Benjamin von Bredow, Juan F. Arias, Lisa N. Heyer, Brian Moldt, Khoa Le, James E. Robinson, Susan Zolla-Pazner, Dennis R. Burton, and David T. Evans. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. J. Virol., 90(13):6127-6139, 1 Jul 2016. PubMed ID: 27122574. Show all entries for this paper.

Walker2009a Laura M. Walker, Sanjay K. Phogat, Po-Ying Chan-Hui, Denise Wagner, Pham Phung, Julie L. Goss, Terri Wrin, Melissa D. Simek, Steven Fling, Jennifer L. Mitcham, Jennifer K. Lehrman, Frances H. Priddy, Ole A. Olsen, Steven M. Frey, Phillip W . Hammond, Protocol G Principal Investigators, Stephen Kaminsky, Timothy Zamb, Matthew Moyle, Wayne C. Koff, Pascal Poignard, and Dennis R. Burton. Broad and Potent Neutralizing Antibodies from an African Donor Reveal a new HIV-1 Vaccine Target. Science, 326(5950):285-289, 9 Oct 2009. PubMed ID: 19729618. Show all entries for this paper.

Walker2010 Laura M. Walker, Melissa D. Simek, Frances Priddy, Johannes S. Gach, Denise Wagner, Michael B. Zwick, Sanjay K. Phogat, Pascal Poignard, and Dennis R. Burton. A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals. PLoS Pathog., 6(8), 2010. PubMed ID: 20700449. Show all entries for this paper.

Wu1996 L. Wu, N. P. Gerard, R. Wyatt, H. Choe, C. Parolin, N. Ruffing, A. Borsetti, A. A. Cardoso, E. Desjardin, W. Newman, C. Gerard, and J. Sodroski. CD4-Induced Interaction of Primary HIV-1 gp120 Glycoproteins with the Chemokine Receptor CCR-5. Nature, 384:179-183, 1996. Results suggest that HIV-1 attachment to CD4 creates a high-affinity binding site for CCR-5, leading to membrane fusion and virus entry. CD4-induced or V3 neutralizing MAbs block the interaction of gp120-CD4 complexes with CCR-5. PubMed ID: 8906795. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Yang2002 Xinzhen Yang, Juliette Lee, Erin M. Mahony, Peter D. Kwong, Richard Wyatt, and Joseph Sodroski. Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin. J. Virol., 76(9):4634-4642, 1 May 2002. PubMed ID: 11932429. Show all entries for this paper.

Yang2006 Xinzhen Yang, Inna Lipchina, Simon Cocklin, Irwin Chaiken, and Joseph Sodroski. Antibody Binding Is a Dominant Determinant of the Efficiency of Human Immunodeficiency Virus Type 1 Neutralization. J. Virol., 80(22):11404-11408, Nov 2006. PubMed ID: 16956933. Show all entries for this paper.

Yuan2005 Wen Yuan, Stewart Craig, Xinzhen Yang, and Joseph Sodroski. Inter-Subunit Disulfide Bonds in Soluble HIV-1 Envelope Glycoprotein Trimers. Virology, 332(1):369-383, 5 Feb 2005. PubMed ID: 15661168. Show all entries for this paper.

Yuan2006 Wen Yuan, Jessica Bazick, and Joseph Sodroski. Characterization of the Multiple Conformational States of Free Monomeric and Trimeric Human Immunodeficiency Virus Envelope Glycoproteins after Fixation by Cross-Linker. J. Virol., 80(14):6725-6737, Jul 2006. PubMed ID: 16809278. Show all entries for this paper.


Displaying record number 708

Download this epitope record as JSON.

MAb ID 212A (2.12A)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, LA
Epitope
Ab Type gp120 C1, gp120 C1-C5
Neutralizing  
Species (Isotype) human
Patient  
Immunogen HIV-1 infection
Keywords vaccine antigen design

Notes

Showing 10 of 10 notes.

References

Showing 12 of 12 references.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.

Sullivan1998 N. Sullivan, Y. Sun, Q. Sattentau, M. Thali, D. Wu, G. Denisova, J. Gershoni, J. Robinson, J. Moore, and J. Sodroski. CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. J. Virol., 72:4694-4703, 1998. A study of the sCD4 inducible MAb 17bi, and the MAb CG10 that recognizes a gp120-CD4 complex. These epitopes are minimally accessible upon attachment of gp120 to the cell. The CD4-binding induced changes in gp120 were studied, exploring the sequestering of chemokine receptor binding sites from the humoral response. PubMed ID: 9573233. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.


Questions or comments? Contact us at immuno@lanl.gov
 
Managed by Triad National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration
Copyright © 2022 Triad National Security, LLC | Disclaimer/Privacy

Dept of Health & Human Services Los Alamos National Institutes of Health