Found 1 matching record:
Displaying record number 1088
Download this epitope
record as JSON.
MAb ID |
21c (2.1C) |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
gp120(gp120 IIIB, J62) |
Research Contact |
James Robinson, Tulane University, New Orleans, LA, USA |
Epitope |
|
Subtype |
B |
Ab Type |
gp120 CD4i, gp120 CCR5BS |
Neutralizing |
L |
Species
(Isotype)
|
human(IgG) |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody generation, antibody lineage, antibody polyreactivity, autoantibody or autoimmunity, binding affinity, neutralization, review, structure, vaccine antigen design |
Notes
Showing 14 of
14 notes.
-
2.1C: LANL database note: This monoclonal antibody is a CHAVI reagent (http://chavi.org/); Species: human; Category: CD4i MAbs; Contact person: James Robinson
-
21c: Somatic hypermutations are preferably found in CDR loops, which alter the Ab combining sites, but not the overall structure of the variable domain. FWR of CDR are usually resistant to and less tolerant of mutations. This study reports that most bnAbs require somatic mutations in the FWRs which provide flexibility, increasing Ab breadth and potency. To determine the consequence of FWR mutations the framework residues were reverted to the Ab's germline counterpart (FWR-GL) and binding and neutralizing properties were then evaluated. 21c was used in comparing the Ab framework amino acid replacement vs. interactive surface area on Ab.
Klein2013
(neutralization, structure, antibody lineage)
-
2.1c: Impact of in vivo Env-CD4 interactions was studied during vaccinations of Rhesus macaques with two Env trimer variants rendered CD4 binding defective (368D/R and 423/425/431 trimers) and wild-type (WT) trimers. Ab binding profiles of the three trimer variants were assessed by binding analyses to different MAbs. 2.1c bound similarly to WT and 368D/R trimers but its binding affinity was completely abrogated for 423/425/431 trimers.
Douagi2010
(binding affinity)
-
21c: 21c binding, autoreactivity, polyreactivity and protective benefits are discussed and compared to other autoreactive MAbs, such as 2F5 and 4E10. Regulation of CD4i MAbs, such as 21c and 17b, by tolerance mechanisms is discussed.
Haynes2010
(autoantibody or autoimmunity, antibody polyreactivity)
-
21c: The crystal structures of 21c Ab and of a complex between gp120, CD4 and 21c Ab were obtained. It was shown that 21c Fab binds to gp120 of HIV-1 clade C involving CDR H2 and H3 regions, and to CD4 involving the light chain of the Ab and three residues from H3. 21c bound to CD4 in the absence of gp120, indicating potential autoreactivity of this Ab. 21c did not neutralize CAP210 clade C HIV-1. The affinity of 21c was shown to increase in gp120 with added V1V2, implying stabilization of 21c by contacts with V1V2 region.
Diskin2010
(antibody binding site, autoantibody or autoimmunity, neutralization, binding affinity, structure)
-
21c: Fusion of CD4 with 21c scFv resulted in CD4-scFv21c reagent, but its neutralization potency was much lower compared to other CD4-CD4i (E51, 17b and 412d) complexes.
West2010
(neutralization)
-
21c: The crystal structure for VRC01 in complex with an HIV-1 gp120 core from a clade A/E recombinant strain was analyzed to understand the structural basis for its neutralization breadth and potency. The number of mutations from the germline and the number of mutated contact residues for 21c were smaller than those for VRC01.
Zhou2010
(neutralization, structure)
-
21c: Two chimeras were constructed from a new HIV-2KR.X7 proviral scaffold where the V3 region was substituted with the V3 from HIV-1 YU2 and Ccon, generating subtype B and C HIV-2 V3 chimera. Both chimera, and the wildtype HIV-2KR and its derivatives HIV-2KR.X4 and HIV-2KR.X7 were resistant to neutralization by 21c.
Davis2009
(neutralization)
-
2.1C: Two different but genetically related viruses, CC101.19 and D1/85.16, which are resistant to small molecule CCR5 inhibitors, and two clones from their inhibitor sensitive parental strain CC1/85, were used to analyze interactions of HIV-1 with CCR5. CC101.19 had 4 substitutions in the V3 region and D1/85.16 had 3 changes in gp41. 2.1C had neutralizing activity against CC101.19 but did not neutralize CC1/85 or D1/85.16. This indicates that at least one major element of the CCR5 binding site has become accessible in the inhibitor-resistant CC101.19 virus.
Berro2009
(neutralization)
-
21c: This review summarizes data on the role of NAb in HIV-1 infection and the mechanisms of Ab protection, data on challenges and strategies to design better immunogens that may induce protective Ab responses, and data on structure and importance of MAb epitopes targeted for immune intervention. The importance of standardized assays and standardized virus panels in neutralization and vaccine studies is also discussed.
Srivastava2005
(antibody binding site, vaccine antigen design, review)
-
21c: Called 2.1C. Of 35 Env-specific MAbs tested, only 2F5, 4E10, IgG1b12, and two CD4BS adjacent MAbs (A32 and 1.4G) and gp41 MAbs (2.2B and KU32) had binding patterns suggesting polyspecific autoreactivity, and similar reactivities may be difficult to induce with vaccines because of elimination of such autoreactivity. 2.1C has no indication of polyspecific autoreactivity.
Haynes2005
(antibody binding site)
-
21c: This review summarizes MAbs directed to HIV-1 Env. There are six CD4 inducible MAbs and Fabs in the database. The MAb forms neutralize TCLA strains only, but the smaller Fabs and scFv fragments can neutralize primary isolates.
Gorny2003
(review)
-
21c: A series of mutational changes were introduced into the YU2 gp120 that favored different conformations -- 375 S/W seems to favor a conformation of gp120 closer to the CD4-bound state, and is readily bound by sCD4 and CD4i MAbs (17b, 48d, 49e, 21c and 23e) but binding of anti-CD4BS MAbs (F105, 15e, IgG1b12, 21h and F91 was markedly reduced -- IgG1b12 failed to neutralize this mutant, while neutralization by 2G12 was enhanced -- 2F5 did not neutralize either WT or mutant, probably due to polymorphism in the YU2 epitope -- another mutant, 423 I/P, disrupted the gp120 bridging sheet, favored a different conformation and did not bind CD4, CCR5, or CD4i antibodies, but did bind to CD4BS MAbs.
Xiang2002
(antibody binding site, vaccine antigen design)
-
21c: Five CD4i MAbs were studied, 17b, 48d and three new MAbs derived by Epstein-Barr virus transformation of PBMC from an HIV+ long term non-progressor -- 23e and 21c were converted to hybridomas to increase Ab production -- all compete with the well-characterized 17b CD4i MAb in an ELISA antigen capture assay -- critical binding residues are mapped and the CD4i MAb epitopes were distinct but share a common element near isoleucine 420, also important for CCR5 binding, and all five can block CCR5 binding to a sCD4-gp120 complex -- the MAb 48d has the epitope most similar to the CCR5 binding site.
Xiang2002b
(antibody binding site, antibody generation)
References
Showing 13 of
13 references.
Isolation Paper
Xiang2002b
Shi-Hua Xiang, Najah Doka, Rabeéea K. Choudhary, Joseph Sodroski, and James E. Robinson. Characterization of CD4-Induced Epitopes on the HIV Type 1 gp120 Envelope Glycoprotein Recognized by Neutralizing Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 18(16):1207-1217, 1 Nov 2002. PubMed ID: 12487827.
Show all entries for this paper.
Berro2009
Reem Berro, Rogier W. Sanders, Min Lu, Per J. Klasse, and John P. Moore. Two HIV-1 Variants Resistant to Small Molecule CCR5 Inhibitors Differ in How They Use CCR5 for Entry. PLoS Pathog., 5(8):e1000548, Aug 2009. PubMed ID: 19680536.
Show all entries for this paper.
Davis2009
Katie L. Davis, Frederic Bibollet-Ruche, Hui Li, Julie M. Decker, Olaf Kutsch, Lynn Morris, Aidy Salomon, Abraham Pinter, James A. Hoxie, Beatrice H. Hahn, Peter D. Kwong, and George M. Shaw. Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. J. Virol., 83(3):1240-1259, Feb 2009. PubMed ID: 19019969.
Show all entries for this paper.
Diskin2010
Ron Diskin, Paola M. Marcovecchio, and Pamela J. Bjorkman. Structure of a Clade C HIV-1 gp120 Bound to CD4 and CD4-Induced Antibody Reveals Anti-CD4 Polyreactivity. Nat. Struct. Mol. Biol., 17(5):608-613, May 2010. PubMed ID: 20357769.
Show all entries for this paper.
Douagi2010
Iyadh Douagi, Mattias N. E. Forsell, Christopher Sundling, Sijy O'Dell, Yu Feng, Pia Dosenovic, Yuxing Li, Robert Seder, Karin Loré, John R. Mascola, Richard T. Wyatt, and Gunilla B. Karlsson Hedestam. Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates. J. Virol., 84(4):1683-1695, Feb 2010. PubMed ID: 19955308.
Show all entries for this paper.
Gorny2003
Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162.
Show all entries for this paper.
Haynes2005
Barton F. Haynes, Judith Fleming, E. William St. Clair, Herman Katinger, Gabriela Stiegler, Renate Kunert, James Robinson, Richard M. Scearce, Kelly Plonk, Herman F. Staats, Thomas L. Ortel, Hua-Xin Liao, and S. Munir Alam. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 308(5730):1906-1908, 24 Jun 2005. Comment in Science 2005 Jun 24;308(5730):1878-9. PubMed ID: 15860590.
Show all entries for this paper.
Haynes2010
Barton F. Haynes, Nathan I. Nicely, and S. Munir Alam. HIV-1 Autoreactive Antibodies: Are They Good or Bad for HIV-1 Prevention? Nat. Struct. Mol. Biol., 17(5):543-545, May 2010. PubMed ID: 20442740.
Show all entries for this paper.
Klein2013
Florian Klein, Ron Diskin, Johannes F. Scheid, Christian Gaebler, Hugo Mouquet, Ivelin S. Georgiev, Marie Pancera, Tongqing Zhou, Reha-Baris Incesu, Brooks Zhongzheng Fu, Priyanthi N. P. Gnanapragasam, Thiago Y. Oliveira, Michael S. Seaman, Peter D. Kwong, Pamela J. Bjorkman, and Michel C. Nussenzweig. Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 153(1):126-138, 28 Mar 2013. PubMed ID: 23540694.
Show all entries for this paper.
Srivastava2005
Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830.
Show all entries for this paper.
West2010
Anthony P. West, Jr., Rachel P. Galimidi, Christopher P. Foglesong, Priyanthi N. P. Gnanapragasam, Joshua S. Klein, and Pamela J. Bjorkman. Evaluation of CD4-CD4i Antibody Architectures Yields Potent, Broadly Cross-Reactive Anti-Human Immunodeficiency Virus Reagents. J. Virol., 84(1):261-269, Jan 2010. PubMed ID: 19864392.
Show all entries for this paper.
Xiang2002
Shi-Hua. Xiang, Peter D. Kwong, Rishi Gupta, Carlo D. Rizzuto, David J. Casper, Richard Wyatt, Liping Wang, Wayne A. Hendrickson, Michael L. Doyle, and Joseph Sodroski. Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 76(19):9888-9899, Oct 2002. PubMed ID: 12208966.
Show all entries for this paper.
Zhou2010
Tongqing Zhou, Ivelin Georgiev, Xueling Wu, Zhi-Yong Yang, Kaifan Dai, Andrés Finzi, Young Do Kwon, Johannes F. Scheid, Wei Shi, Ling Xu, Yongping Yang, Jiang Zhu, Michel C. Nussenzweig, Joseph Sodroski, Lawrence Shapiro, Gary J. Nabel, John R. Mascola, and Peter D. Kwong. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 329(5993):811-817, 13 Aug 2010. PubMed ID: 20616231.
Show all entries for this paper.