HIV molecular immunology database

 

Search Antibody Database

Found 27 matching records:

Displaying record number 263

Download this epitope record as JSON.

MAb ID 133/290
HXB2 Location gp160(61-70)
DNA(6405..6434)
gp160 Epitope Map
Author Location gp120(61-70 LAI)
Research Contact M. Niedrig
Epitope YDTEVHNVWA Epitope Alignment
YDTEVHNVWA epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 11 of 11 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Wyatt1995 R. Wyatt, J. Moore, M. Accola, E. Desjardin, J. Robinson, and J. Sodroski. Involvement of the V1/V2 Variable Loop Structure in the Exposure of Human Immunodeficiency Virus Type 1 gp120 Epitopes Induced by Receptor Binding. J. Virol., 69:5723-5733, 1995. Deletions in the V1/V2 loops of gp120 resulted in the loss of the ability of sCD4 to induce binding of the MAbs 17b, 48d, and A32. A32 can induce binding of 17b and 48d; this induction does not appear to involve the V1/V2 regions. PubMed ID: 7543586. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.


Displaying record number 270

Download this epitope record as JSON.

MAb ID 133/192
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(91-100 LAI)
Research Contact Matthias Niedrig
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 10 of 10 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.


Displaying record number 272

Download this epitope record as JSON.

MAb ID B2
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(91-100 LAI)
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG2b)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade LAI
Vaccine component gp160

Notes

Showing 3 of 3 notes.

References

Showing 5 of 5 references.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Abacioglu1994 Y. H. Abacioglu, T. R. Fouts, J. D. Laman, E. Claassen, S. H. Pincus, J. P. Moore, C. A. Roby, R. Kamin-Lewis, and G. K. Lewis. Epitope Mapping and Topology of Baculovirus-Expressed HIV-1 gp160 Determined with a Panel of Murine Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 10:371-381, 1994. Thirty MAbs were obtained from BALB/c mice immunized with rgp160 LAI expressed in baculovirus. These antibodies map to 4 domains: gp120 C1, C2, C3/V4, and the cytoplasmic tail of gp41. All epitopes were exposed on rgp160 without denaturing the protein, but 6/8 epitopes mapped in gp120 are not exposed unless the protein is denatured, showing rgp160 and rgp120 fold differently. PubMed ID: 8068416. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.


Displaying record number 285

Download this epitope record as JSON.

MAb ID T9
HXB2 Location gp160(91-100)
DNA(6495..6524)
gp160 Epitope Map
Author Location gp120(gp120 91-100 LAI)
Research Contact Lennart Akerblom, Britta Wahren and Jorma Hinkula
Epitope ENFDMWKNDM Epitope Alignment
ENFDMWKNDM epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing  
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine strain B clade LAI
Vaccine component Env

Notes

Showing 3 of 3 notes.

References

Showing 5 of 5 references.

Akerblom1990 L. Akerblom, J. Hinkula, P.-A. Broliden, B. Makitalo, T. Fridberger, J. Rosen, M. Villacres-Eriksson, B. Morein, and B. Wahren. Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS, 4:953-960, 1990. PubMed ID: 1702001. Show all entries for this paper.

Bolmstedt1992 A. Bolmstedt, S. Olofsson, E. Sjogren-Jansson, I. Sjoblom, L. Akerblom, J.-E. S. Hansen, and S.-L. Hu. Carbohydrate Determinant NeuAc-Gal-beta(1-4) of N-Linked Glycans Modulates the Antigenic Activity of Human Immunodeficiency Virus Type 1 Glycoprotein gp120. J. Gen. Virol., 73:3009-3105, 1990. PubMed ID: 1281869. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.


Displaying record number 303

Download this epitope record as JSON.

MAb ID 135/9 (87-135/9)
HXB2 Location gp160(111-120)
DNA(6555..6584)
gp160 Epitope Map
Author Location gp120(111-120 LAI)
Research Contact Matthias Niedrig
Epitope LWDQSLKPCV Epitope Alignment
LWDQSLKPCV epitope logo
Subtype B
Ab Type gp120 C1
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 8 of 8 notes.

References

Showing 9 of 9 references.

Niedrig1992 M. Niedrig, H.-P. Harthus, M. Broker, H. Bickhard, G. Pauli, H. R. Gelderblom, and B. Wahren. Inhibition of viral replication by monoclonal antibodies directed against human immunodeficiency virus gp120. J. Gen. Virol., 73:2451-2455, 1992. PubMed ID: 1383412. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Kropelin1998 M. Kropelin, C. Susal, V. Daniel, and G. Opelz. Inhibition of HIV-1 rgp120 Binding to CD4+ T Cells by Monoclonal Antibodies Directed against the gp120 C1 or C4 Region. Immunol. Lett., 63:19-25, 1998. PubMed ID: 9719434. Show all entries for this paper.

Yang2000 Xinzhen Yang, Michael Farzan, Richard Wyatt, and Joseph Sodroski. Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J. Virol., 74(12):5716-5725, Jun 2000. PubMed ID: 10823881. Show all entries for this paper.


Displaying record number 325

Download this epitope record as JSON.

MAb ID 697-D (697D, 697-30D)
HXB2 Location gp160(161-180)
DNA(6705..6764)
gp160 Epitope Map
Author Location gp120(161-180 IIIB)
Research Contact Susan Zolla-Pazner (Zollas01@mcrcr6.med.nyu) (NYU Med. Center) or Cellular Products Inc, Buffalo NY
Epitope ISTSIRGKVQKEYAFFYKLD Epitope Alignment
ISTSIRGKVQKEYAFFYKLD epitope logo
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing P (weak)  View neutralization details
Contacts and Features View contacts and features
Species (Isotype) human(IgG1λ)
Patient  
Immunogen HIV-1 infection
Keywords ADCC, antibody binding site, antibody generation, binding affinity, co-receptor, dendritic cells, enhancing activity, glycosylation, neutralization, review, structure, subtype comparisons, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity

Notes

Showing 29 of 29 notes.

References

Showing 30 of 30 references.

Isolation Paper
Gorny1994 M. K. Gorny, J. P. Moore, A. J. Conley, S. Karwowska, J. Sodroski, C. Williams, S. Burda, L. J. Boots, and S. Zolla-Pazner. Human Anti-V2 Monoclonal Antibody That Neutralizes Primary but Not Laboratory Isolates of Human Immunodeficiency Virus Type 1. J. Virol., 68:8312-8320, 1994. Detailed characterization of the MAb 697-D. PubMed ID: 7525987. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Bradley2016a Todd Bradley, Ashley Trama, Nancy Tumba, Elin Gray, Xiaozhi Lu, Navid Madani, Fatemeh Jahanbakhsh, Amanda Eaton, Shi-Mao Xia, Robert Parks, Krissey E. Lloyd, Laura L. Sutherland, Richard M. Scearce, Cindy M. Bowman, Susan Barnett, Salim S. Abdool-Karim, Scott D. Boyd, Bruno Melillo, Amos B. Smith, 3rd., Joseph Sodroski, Thomas B. Kepler, S. Munir Alam, Feng Gao, Mattia Bonsignori, Hua-Xin Liao, M Anthony Moody, David Montefiori, Sampa Santra, Lynn Morris, and Barton F. Haynes. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 12:196-207, Oct 2016. PubMed ID: 27612593. Show all entries for this paper.

EdwardsBH2002 Bradley H. Edwards, Anju Bansal, Steffanie Sabbaj, Janna Bakari, Mark J. Mulligan, and Paul A. Goepfert. Magnitude of Functional CD8+ T-Cell Responses to the Gag Protein of Human Immunodeficiency Virus Type 1 Correlates Inversely with Viral Load in Plasma. J. Virol., 76(5):2298-2305, Mar 2002. PubMed ID: 11836408. Show all entries for this paper.

Forthal1995 D. N. Forthal, G. Landucci, M. K. Gorny, S. Zolla-Pazner, and W. E. Robinson, Jr. Functional Activities of 20 Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 11:1095-1099, 1995. A series of tests were performed on 20 human monoclonal antibodies to assess their potential therapeutic utility. Antibodies were tested for potentially harmful complement-mediated antibody enhancing activity (C-ADE), and for potentially beneficial neutralizing activity and antibody dependent cellular cytotoxicity ADCC. PubMed ID: 8554906. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Gorny2000b M. K. Gorny, T. C. VanCott, C. Williams, K. Revesz, and S. Zolla-Pazner. Effects of oligomerization on the epitopes of the human immunodeficiency virus type 1 envelope glycoproteins. Virology, 267:220-8, 2000. PubMed ID: 10662617. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Gorny2012 Miroslaw K. Gorny, Ruimin Pan, Constance Williams, Xiao-Hong Wang, Barbara Volsky, Timothy O'Neal, Brett Spurrier, Jared M. Sampson, Liuzhe Li, Michael S. Seaman, Xiang-Peng Kong, and Susan Zolla-Pazner. Functional and Immunochemical Cross-Reactivity of V2-Specific Monoclonal Antibodies from HIV-1-Infected Individuals. Virology, 427(2):198-207, 5 Jun 2012. PubMed ID: 22402248. Show all entries for this paper.

Granados-Gonzalez2008 Viviana Granados-Gonzalez, Julien Claret, Willy Berlier, Nadine Vincent, Silvio Urcuqui-Inchima, Frederic Lucht, Christiane Defontaine, Abraham Pinter, Christian Genin, and Serge Riffard. Opposite Immune Reactivity of Serum IgG and Secretory IgA to Conformational Recombinant Proteins Mimicking V1/V2 Domains of Three Different HIV Type 1 Subtypes Depending on Glycosylation. AIDS Res. Hum. Retroviruses, 24(2):289-299, Feb 2008. PubMed ID: 18260782. Show all entries for this paper.

Haldar2011 Bijayesh Haldar, Sherri Burda, Constance Williams, Leo Heyndrickx, Guido Vanham, Miroslaw K. Gorny, and Phillipe Nyambi. Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies. PLoS One, 6(2):e17253, 2011. PubMed ID: 21383841. Show all entries for this paper.

He2002 Yuxian He, William J. Honnen, Chavdar P. Krachmarov, Michael Burkhart, Samuel C. Kayman, Jose Corvalan, and Abraham Pinter. Efficient Isolation of Novel Human Monoclonal Antibodies with Neutralizing Activity Against HIV-1 from Transgenic Mice Expressing Human Ig Loci. J. Immunol., 169(1):595-605, 1 Jul 2002. PubMed ID: 12077293. Show all entries for this paper.

Hioe2000 C. E. Hioe, G. J. Jones, A. D. Rees, S. Ratto-Kim, D. Birx, C. Munz, M. K. Gorny, M. Tuen, and S. Zolla-Pazner. Anti-CD4-Binding Domain Antibodies Complexed with HIV Type 1 Glycoprotein 120 Inhibit CD4+ T Cell-Proliferative Responses to Glycoprotein 120. AIDS Res. Hum. Retroviruses, 16:893-905, 2000. PubMed ID: 10875615. Show all entries for this paper.

Hioe2009 Catarina E. Hioe, Maria Luisa Visciano, Rajnish Kumar, Jianping Liu, Ethan A. Mack, Rachel E. Simon, David N. Levy, and Michael Tuen. The Use of Immune Complex Vaccines to Enhance Antibody Responses against Neutralizing Epitopes on HIV-1 Envelope gp120. Vaccine, 28(2):352-360, 11 Dec 2009. PubMed ID: 19879224. Show all entries for this paper.

Holl2006 Vincent Holl, Maryse Peressin, Thomas Decoville, Sylvie Schmidt, Susan Zolla-Pazner, Anne-Marie Aubertin, and Christiane Moog. Nonneutralizing Antibodies Are Able To Inhibit Human Immunodeficiency Virus Type 1 Replication in Macrophages and Immature Dendritic Cells. J. Virol., 80(12):6177-6181, Jun 2006. PubMed ID: 16731957. Show all entries for this paper.

Kalia2005 Vandana Kalia, Surojit Sarkar, Phalguni Gupta, and Ronald C. Montelaro. Antibody Neutralization Escape Mediated by Point Mutations in the Intracytoplasmic Tail of Human Immunodeficiency Virus Type 1 gp41. J. Virol., 79(4):2097-2107, Feb 2005. PubMed ID: 15681412. Show all entries for this paper.

Kramer2007 Victor G. Kramer, Nagadenahalli B. Siddappa, and Ruth M. Ruprecht. Passive Immunization as Tool to Identify Protective HIV-1 Env Epitopes. Curr. HIV Res., 5(6):642-55, Nov 2007. PubMed ID: 18045119. Show all entries for this paper.

Liao2013b Hua-Xin Liao, Mattia Bonsignori, S. Munir Alam, Jason S. McLellan, Georgia D. Tomaras, M. Anthony Moody, Daniel M. Kozink, Kwan-Ki Hwang, Xi Chen, Chun-Yen Tsao, Pinghuang Liu, Xiaozhi Lu, Robert J. Parks, David C. Montefiori, Guido Ferrari, Justin Pollara, Mangala Rao, Kristina K. Peachman, Sampa Santra, Norman L. Letvin, Nicos Karasavvas, Zhi-Yong Yang, Kaifan Dai, Marie Pancera, Jason Gorman, Kevin Wiehe, Nathan I. Nicely, Supachai Rerks-Ngarm, Sorachai Nitayaphan, Jaranit Kaewkungwal, Punnee Pitisuttithum, James Tartaglia, Faruk Sinangil, Jerome H. Kim, Nelson L. Michael, Thomas B. Kepler, Peter D. Kwong, John R. Mascola, Gary J. Nabel, Abraham Pinter, Susan Zolla-Pazner, and Barton F. Haynes. Vaccine Induction of Antibodies Against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 38(1):176-186, 24 Jan 2013. PubMed ID: 23313589. Show all entries for this paper.

Liu2014 Pinghuang Liu, Latonya D. Williams, Xiaoying Shen, Mattia Bonsignori, Nathan A. Vandergrift, R. Glenn Overman, M. Anthony Moody, Hua-Xin Liao, Daniel J. Stieh, Kerrie L. McCotter, Audrey L. French, Thomas J. Hope, Robin Shattock, Barton F. Haynes, and Georgia D. Tomaras. Capacity for Infectious HIV-1 Virion Capture Differs by Envelope Antibody Specificity. J. Virol., 88(9):5165-5170, May 2014. PubMed ID: 24554654. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.

McCann2005 C. M. Mc Cann, R. J. Song, and R. M. Ruprecht. Antibodies: Can They Protect Against HIV Infection? Curr. Drug Targets Infect. Disord., 5(2):95-111, Jun 2005. PubMed ID: 15975016. Show all entries for this paper.

Moore1995c J. P. Moore and D. D. Ho. HIV-1 Neutralization: The Consequences of Adaptation to Growth on Transformed T-Cells. AIDS, 9(suppl A):S117-S136, 1995. This review considers the relative importance of a neutralizing antibody response for the development of a vaccine, and for disease progression during the chronic phase of HIV-1 infection. It suggests that T-cell immunity may be more important. The distinction between MAbs that can neutralize primary isolates, and those that are effective at neutralizing only laboratory adapted strains is discussed in detail. Alternative conformations of envelope and non-contiguous interacting domains in gp120 are discussed. The suggestion that soluble monomeric gp120 may serve as a viral decoy that diverts the humoral immune response it in vivo is put forth. PubMed ID: 8819579. Show all entries for this paper.

Nyambi1998 P. N. Nyambi, M. K. Gorny, L. Bastiani, G. van der Groen, C. Williams, and S. Zolla-Pazner. Mapping of Epitopes Exposed on Intact Human Immunodeficiency Virus Type 1 (HIV-1) Virions: A New Strategy for Studying the Immunologic Relatedness of HIV-1. J. Virol., 72:9384-9391, 1998. 18 human MAbs binding to gp120 and gp41 were tested using a novel assay to test binding to intact HIV-1 virions. The new method involves using MAbs to the host proteins incorporated into virions to bind them to ELIZA plates. Antigenic conservation in epitopes of HIV-1 in clades A, B, D, F, G, and H was studied. MAbs were selected that were directed against V2, V3, CD4bd, C5 or gp41 regions. Antibodies against V2, the CD4BS, and sp41 showed weak and sporadic reactivities, while binding strongly to gp120, suggesting these epitopes are hidden when gp120 is in its native, quaternary structure. PubMed ID: 9765494. Show all entries for this paper.

Nyambi2000 P. N. Nyambi, H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S. Zolla-Pazner. Conserved and Exposed Epitopes on Intact, Native, Primary Human Immunodeficiency Virus Type 1 Virions of Group M. J. Virol., 74:7096-7107, 2000. PubMed ID: 10888650. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Selvarajah2005 Suganya Selvarajah, Bridget Puffer, Ralph Pantophlet, Mansun Law, Robert W. Doms, and Dennis R. Burton. Comparing Antigenicity and Immunogenicity of Engineered gp120. J. Virol., 79(19):12148-12163, Oct 2005. PubMed ID: 16160142. Show all entries for this paper.

Stamatatos1998 L. Stamatatos and C. Cheng-Mayer. An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades. J. Virol., 72:7840-7845, 1998. PubMed ID: 9733820. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Upadhyay2014 Chitra Upadhyay, Luzia M. Mayr, Jing Zhang, Rajnish Kumar, Miroslaw K. Gorny, Arthur Nádas, Susan Zolla-Pazner, and Catarina E. Hioe. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope. J. Virol., 88(21):12853-12865, Nov 2014. PubMed ID: 25165106. Show all entries for this paper.

Yates2018 Nicole L. Yates, Allan C. deCamp, Bette T. Korber, Hua-Xin Liao, Carmela Irene, Abraham Pinter, James Peacock, Linda J. Harris, Sheetal Sawant, Peter Hraber, Xiaoying Shen, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayapan, Phillip W. Berman, Merlin L. Robb, Giuseppe Pantaleo, Susan Zolla-Pazner, Barton F. Haynes, S. Munir Alam, David C. Montefiori, and Georgia D. Tomaras. HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J. Virol., 92(8), 15 Apr 2018. PubMed ID: 29386288. Show all entries for this paper.


Displaying record number 321

Download this epitope record as JSON.

MAb ID G3-4 (G3.4)
HXB2 Location gp160(170-180)
DNA(6732..6764)
gp160 Epitope Map
Author Location gp120(170-180 BH10)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope QKEYAFFYKLD Epitope Alignment
QKEYAFFYKLD epitope logo
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing L
Species (Isotype) mouse(IgG2bκ)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody generation, antibody interactions, binding affinity, vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 29 of 29 notes.

References

Showing 34 of 34 references.

Isolation Paper
Ho1991 D. D. Ho, M. S. C. Fung, Y. Cao, X. L. Li, C. Sun, T. W. Chang, and N.-C. Sun. Another discontinuous epitope on glycoprotein gp120 that is important in human immunodeficiency virus type 1 neutralization is identified by a monoclonal antibody. Proc. Natl. Acad. Sci. U.S.A., 88:8949-8952, 1991. A description of the neutralizing murine MAb G3-4. Evidence suggested that the G3-4 epitope was discontinuous, but later studies showed marginal peptide binding in the V2 region. PubMed ID: 1717992. Show all entries for this paper.

Ho1992 D. D. Ho, M. S. C. Fung, H. Yoshiyama, Y. Cao, and J. E. Robinson. Discontinuous Epitopes on gp120 Important in HIV-1 Neutralization. AIDS Res. Hum. Retroviruses, 8:1337-1339, 1992. Further description of the human MAb 15e and the murine MAb G3-4. gp120 mutants that affect 15e epitope binding: 113, 257, 368, 370, 421, 427, 475; four of these coincide with amino acids important for the CD4 binding domain. G3-4 is neutralizing and behaves like a discontinuous epitope, and partially blocks sCD4 binding. PubMed ID: 1281654. Show all entries for this paper.

Fung1992 M. S. C. Fung, C. R. Y. Sun, W. L. Gordon, R.-S. Liou, T. W. Chang, W. N. C. Sun, E. S. Daar, and D. D. Ho. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120. J. Virol., 66:848-856, 1992. Two anti-envelope V2 antibodies were raised that neutralize virus in either a conformation dependent (G3-136) or conformation independent (BAT085) manner. G3-136 has diminished reactivity with deglycosylation or DTT reduced gp120, and sCD4 inhibits binding in a competition assay; BAT085 is not sensitive to these alterations in gp120. PubMed ID: 1370558. Show all entries for this paper.

McKeating1992a J. A. McKeating, J. Cordell, C. J. Dean, and P. Balfe. Synergistic Interaction between Ligands Binding to the CD4 Binding Site and V3 Domain of Human Immunodeficiency Virus Type I gp120. Virology, 191:732-742, 1992. PubMed ID: 1280382. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Sullivan1993 N. Sullivan, M. Thali, C. Furman, D. Ho, and J. Sodroski. Effect of Amino Acid Changes in the V2 Region of the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein on Subunit Association, Syncytium Formation, and Recognition by a Neutralizing Antibody. J. Virol., 67:3674-3679, 1993. Recognition of neutralizing MAb G3-4 was altered by substitutions in 176 to 184 in the V2 loop. Some changes in the V2 loop can affect subunit assembly; other changes allow expression and CD4 binding but inhibit syncytium formation and viral entry, suggesting that V1/V2 may be involved in post receptor binding events. PubMed ID: 8497077. Show all entries for this paper.

Sattentau1993 Q. J. Sattentau, J. P. Moore, F. Vignaux, F. Traincard, and P. Poignard. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol., 67:7383-7393, 1993. PubMed ID: 7693970. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1993b J. P. Moore, Q. J. Sattentau, H. Yoshiyama, M. Thali, M. Charles, N. Sullivan, S.-W. Poon, M. S. Fung, F. Traincard, M. Pinkus, G. Robey, J. E. Robinson, D. D. Ho, and J. Sodroski. Probing the Structure of the V2 Domain of Human Immunodeficiency Virus Type 1 Surface Glycoprotein gp120 with a Panel of Eight Monoclonal Antibodies: Human Immune Response to the V1 and V2 domains. J. Virol., 67:6136-6151, 1993. PubMed ID: 7690418. Show all entries for this paper.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Gorny1994 M. K. Gorny, J. P. Moore, A. J. Conley, S. Karwowska, J. Sodroski, C. Williams, S. Burda, L. J. Boots, and S. Zolla-Pazner. Human Anti-V2 Monoclonal Antibody That Neutralizes Primary but Not Laboratory Isolates of Human Immunodeficiency Virus Type 1. J. Virol., 68:8312-8320, 1994. Detailed characterization of the MAb 697-D. PubMed ID: 7525987. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Yoshiyama1994 H. Yoshiyama, H.-M. Mo, J. P. Moore, and D. D. Ho. Characterization of Mutants of Human Immunodeficiency Virus Type 1 That Have Escaped Neutralization by Monoclonal Antibody G3-4 to the gp120 V2 Loop. J. Virol., 68:974-978, 1994. MAb G3-4 binds a conformationally sensitive epitope in the V2 loop of HIV-1 RF. RF was cultured in the presence of G3-4 to select for neutralization resistance. Three independent experiments yielded escape mutants, and sequencing revealed two V2 mutations to be responsible for the neutralization escape phenotype, 177 Y/H and 179 L/P. Experimental introduction of the 179 P substitution resulted in non-viable virus, and 177 H confirmed the resistance phenotype. PubMed ID: 7507188. Show all entries for this paper.

Stamatatos1995 L. Stamatatos and C. Cheng-Mayer. Structural Modulations of the Envelope gp120 Glycoprotein of Human Immunodeficiency Virus Type 1 upon Oligomerization and the Differential V3 Loop Epitope Exposure of Isolates Displaying Distinct Tropism upon Viral-Soluble Receptor Binding. J. Virol., 69:6191-6198, 1995. PubMed ID: 7545244. Show all entries for this paper.

Wu1995 Z. Wu, S. C. Kayman, W. Honnen, K. Revesz, H. Chen, S. V. Warrier, S. A. Tilley, J. McKeating, C. Shotton, and A. Pinter. Characterization of Neutralization Epitopes in the V2 Region of Human Immunodeficiency Virus Type 1 gp120: Role of Glycosylation in the Correct Folding of the V1/V2 Domain. J. Virol., 69:2271-2278, 1995. Most epitopes based only on numbering. PubMed ID: 7533854. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Jagodzinski1996 P. P. Jagodzinski, J. Wustner, D. Kmieciak, T. J. Wasik, A. Fertala, A. L. Sieron, M. Takahashi, T. Tsuji, T. Mimura, M. S. Fung, M. K. Gorny, M. Kloczewiak, Y. Kaneko, and D. Kozbor. Role of the V2, V3, and CD4-Binding Domains of GP120 in Curdlan Sulfate Neutralization Sensitivity of HIV-1 during Infection of T Lymphocytes. Virology, 226:217-227, 1996. PubMed ID: 8955041. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Stamatatos1997 L. Stamatatos, S. Zolla-Pazner, M. K. Gorny, and C. Cheng-Mayer. Binding of Antibodies to Virion-Associated gp120 Molecules of Primary-Like Human Immunodeficiency Virus Type 1 (HIV-1) Isolates: Effect on HIV-1 Infection of Macrophages and Peripheral Blood Mononuclear Cells. Virology, 229:360-369, 1997. PubMed ID: 9126249. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Stamatatos1998 L. Stamatatos and C. Cheng-Mayer. An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades. J. Virol., 72:7840-7845, 1998. PubMed ID: 9733820. Show all entries for this paper.

Ly2000 A. Ly and L. Stamatatos. V2 Loop Glycosylation of the Human Immunodeficiency Virus Type 1 SF162 Envelope Facilitates Interaction of this Protein with CD4 and CCR5 Receptors and Protects the Virus from Neutralization by Anti-V3 Loop and Anti-CD4 Binding Site Antibodies. J. Virol., 74:6769-6776, 2000. PubMed ID: 10888615. Show all entries for this paper.

Srivastava2002 Indresh K. Srivastava, Leonidas Stamatatos, Harold Legg, Elaine Kan, Anne Fong, Stephen R. Coates, Louisa Leung, Mark Wininger, John J. Donnelly, Jeffrey B. Ulmer, and Susan W. Barnett. Purification and Characterization of Oligomeric Envelope Glycoprotein from a Primary R5 Subtype B Human Immunodeficiency Virus. J. Virol., 76(6):2835-2847, Mar 2002. URL: http://jvi.asm.org/cgi/content/full/76/6/2835. PubMed ID: 11861851. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

McCaffrey2004 Ruth A McCaffrey, Cheryl Saunders, Mike Hensel, and Leonidas Stamatatos. N-Linked Glycosylation of the V3 Loop and the Immunologically Silent Face of gp120 Protects Human Immunodeficiency Virus Type 1 SF162 from Neutralization by Anti-gp120 and Anti-gp41 Antibodies. J. Virol., 78(7):3279-3295, Apr 2004. PubMed ID: 15016849. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.

Gorny2005 Miroslaw K. Gorny, Leonidas Stamatatos, Barbara Volsky, Kathy Revesz, Constance Williams, Xiao-Hong Wang, Sandra Cohen, Robert Staudinger, and Susan Zolla-Pazner. Identification of a New Quaternary Neutralizing Epitope on Human Immunodeficiency Virus Type 1 Virus Particles. J. Virol., 79(8):5232-5237, Apr 2005. PubMed ID: 15795308. Show all entries for this paper.

Binley2006 James M. Binley, Stacie Ngo-Abdalla, Penny Moore, Michael Bobardt, Udayan Chatterji, Philippe Gallay, Dennis R. Burton, Ian A. Wilson, John H. Elder, and Aymeric de Parseval. Inhibition of HIV Env Binding to Cellular Receptors by Monoclonal Antibody 2G12 as Probed by Fc-Tagged gp120. Retrovirology, 3:39, 2006. PubMed ID: 16817962. Show all entries for this paper.

Derby2006 Nina R. Derby, Zane Kraft, Elaine Kan, Emma T. Crooks, Susan W. Barnett, Indresh K. Srivastava, James M. Binley, and Leonidas Stamatatos. Antibody Responses Elicited in Macaques Immunized with Human Immunodeficiency Virus Type 1 (HIV-1) SF162-Derived gp140 Envelope Immunogens: Comparison with Those Elicited during Homologous Simian/Human Immunodeficiency Virus SHIVSF162P4 and Heterologous HIV-1 Infection. J. Virol., 80(17):8745-8762, Sep 2006. PubMed ID: 16912322. Show all entries for this paper.


Displaying record number 323

Download this epitope record as JSON.

MAb ID G3-136 (G3.136)
HXB2 Location gp160(170-180)
DNA(6732..6764)
gp160 Epitope Map
Author Location gp120(170-180 IIIB)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope QKEYAFFYKLD Epitope Alignment
QKEYAFFYKLD epitope logo
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing L
Species (Isotype) mouse(IgG)
Patient  
Immunogen vaccine
Keywords antibody interactions, vaccine antigen design

Vaccine Details

Vaccine type protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 16 of 16 notes.

References

Showing 20 of 20 references.

Isolation Paper
Fung1992 M. S. C. Fung, C. R. Y. Sun, W. L. Gordon, R.-S. Liou, T. W. Chang, W. N. C. Sun, E. S. Daar, and D. D. Ho. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120. J. Virol., 66:848-856, 1992. Two anti-envelope V2 antibodies were raised that neutralize virus in either a conformation dependent (G3-136) or conformation independent (BAT085) manner. G3-136 has diminished reactivity with deglycosylation or DTT reduced gp120, and sCD4 inhibits binding in a competition assay; BAT085 is not sensitive to these alterations in gp120. PubMed ID: 1370558. Show all entries for this paper.

Pirofski1993 L.-A. Pirofski, E. K. Thomas, and M. D. Scharff. Variable region gene utilization and mutation in a group of neutralizing murine anti-human immunodeficiency virus type 1 principal neutralizing determinant antibodies. AIDS Res. Hum. Retroviruses, 9:41-49, 1993. Observed restricted subset of murine V heavy and light chain gene elements in a set of 5 antibodies that bind to the tip of the V3 loop. PubMed ID: 7678971. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1993b J. P. Moore, Q. J. Sattentau, H. Yoshiyama, M. Thali, M. Charles, N. Sullivan, S.-W. Poon, M. S. Fung, F. Traincard, M. Pinkus, G. Robey, J. E. Robinson, D. D. Ho, and J. Sodroski. Probing the Structure of the V2 Domain of Human Immunodeficiency Virus Type 1 Surface Glycoprotein gp120 with a Panel of Eight Monoclonal Antibodies: Human Immune Response to the V1 and V2 domains. J. Virol., 67:6136-6151, 1993. PubMed ID: 7690418. Show all entries for this paper.

Yoshiyama1994 H. Yoshiyama, H.-M. Mo, J. P. Moore, and D. D. Ho. Characterization of Mutants of Human Immunodeficiency Virus Type 1 That Have Escaped Neutralization by Monoclonal Antibody G3-4 to the gp120 V2 Loop. J. Virol., 68:974-978, 1994. MAb G3-4 binds a conformationally sensitive epitope in the V2 loop of HIV-1 RF. RF was cultured in the presence of G3-4 to select for neutralization resistance. Three independent experiments yielded escape mutants, and sequencing revealed two V2 mutations to be responsible for the neutralization escape phenotype, 177 Y/H and 179 L/P. Experimental introduction of the 179 P substitution resulted in non-viable virus, and 177 H confirmed the resistance phenotype. PubMed ID: 7507188. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Stamatatos1995 L. Stamatatos and C. Cheng-Mayer. Structural Modulations of the Envelope gp120 Glycoprotein of Human Immunodeficiency Virus Type 1 upon Oligomerization and the Differential V3 Loop Epitope Exposure of Isolates Displaying Distinct Tropism upon Viral-Soluble Receptor Binding. J. Virol., 69:6191-6198, 1995. PubMed ID: 7545244. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Stamatatos1997 L. Stamatatos, S. Zolla-Pazner, M. K. Gorny, and C. Cheng-Mayer. Binding of Antibodies to Virion-Associated gp120 Molecules of Primary-Like Human Immunodeficiency Virus Type 1 (HIV-1) Isolates: Effect on HIV-1 Infection of Macrophages and Peripheral Blood Mononuclear Cells. Virology, 229:360-369, 1997. PubMed ID: 9126249. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Stamatatos1998 L. Stamatatos and C. Cheng-Mayer. An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades. J. Virol., 72:7840-7845, 1998. PubMed ID: 9733820. Show all entries for this paper.

Ly2000 A. Ly and L. Stamatatos. V2 Loop Glycosylation of the Human Immunodeficiency Virus Type 1 SF162 Envelope Facilitates Interaction of this Protein with CD4 and CCR5 Receptors and Protects the Virus from Neutralization by Anti-V3 Loop and Anti-CD4 Binding Site Antibodies. J. Virol., 74:6769-6776, 2000. PubMed ID: 10888615. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.


Displaying record number 322

Download this epitope record as JSON.

MAb ID BAT085 (BAT-085)
HXB2 Location gp160(171-180)
DNA(6735..6764)
gp160 Epitope Map
Author Location gp120(170-180 IIIB)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope KEYAFFYKLD Epitope Alignment
KEYAFFYKLD epitope logo
Ab Type gp120 V2 // V2 glycan(V2g) // V2 apex
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type inactivated HIV
Vaccine strain B clade IIIB
Vaccine component HIV-1

Notes

Showing 13 of 13 notes.

References

Showing 18 of 18 references.

Isolation Paper
Fung1992 M. S. C. Fung, C. R. Y. Sun, W. L. Gordon, R.-S. Liou, T. W. Chang, W. N. C. Sun, E. S. Daar, and D. D. Ho. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120. J. Virol., 66:848-856, 1992. Two anti-envelope V2 antibodies were raised that neutralize virus in either a conformation dependent (G3-136) or conformation independent (BAT085) manner. G3-136 has diminished reactivity with deglycosylation or DTT reduced gp120, and sCD4 inhibits binding in a competition assay; BAT085 is not sensitive to these alterations in gp120. PubMed ID: 1370558. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

DSouza1994 M. P. D'Souza, S. J. Geyer, C. V. Hanson, R. M. Hendry, G. Milman, and Collaborating Investigators. Evaluation of Monoclonal Antibodies to HIV-1 Envelope by Neutralization and Binding Assays: An International Collaboration. AIDS, 8:169-181, 1994. PubMed ID: 7519019. Show all entries for this paper.

Fung1987 M. S. C. Fung, C. R. Y. Sun, N.-C. Sun, N. T. Chang, and T.-W. Chang. Monoclonal Antibodies That Neutralize HIV-1 Virions and Inhibit Syncytium Formation by Infected Cells. Biotechnology, 5:940-947, 1987. Show all entries for this paper.

Gorny1994 M. K. Gorny, J. P. Moore, A. J. Conley, S. Karwowska, J. Sodroski, C. Williams, S. Burda, L. J. Boots, and S. Zolla-Pazner. Human Anti-V2 Monoclonal Antibody That Neutralizes Primary but Not Laboratory Isolates of Human Immunodeficiency Virus Type 1. J. Virol., 68:8312-8320, 1994. Detailed characterization of the MAb 697-D. PubMed ID: 7525987. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1993b J. P. Moore, Q. J. Sattentau, H. Yoshiyama, M. Thali, M. Charles, N. Sullivan, S.-W. Poon, M. S. Fung, F. Traincard, M. Pinkus, G. Robey, J. E. Robinson, D. D. Ho, and J. Sodroski. Probing the Structure of the V2 Domain of Human Immunodeficiency Virus Type 1 Surface Glycoprotein gp120 with a Panel of Eight Monoclonal Antibodies: Human Immune Response to the V1 and V2 domains. J. Virol., 67:6136-6151, 1993. PubMed ID: 7690418. Show all entries for this paper.

Moore1994c J. P. Moore, R. L. Willey, G. K. Lewis, J. Robinson, and J. Sodroski. Immunological evidence for interactions between the first, second and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol., 68:6836-6847, 1994. Mutation 267N/Q in C2 region results in exposing the carboxy-terminal end gp120. PubMed ID: 7933065. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Pirofski1993 L.-A. Pirofski, E. K. Thomas, and M. D. Scharff. Variable region gene utilization and mutation in a group of neutralizing murine anti-human immunodeficiency virus type 1 principal neutralizing determinant antibodies. AIDS Res. Hum. Retroviruses, 9:41-49, 1993. Observed restricted subset of murine V heavy and light chain gene elements in a set of 5 antibodies that bind to the tip of the V3 loop. PubMed ID: 7678971. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Wu1995 Z. Wu, S. C. Kayman, W. Honnen, K. Revesz, H. Chen, S. V. Warrier, S. A. Tilley, J. McKeating, C. Shotton, and A. Pinter. Characterization of Neutralization Epitopes in the V2 Region of Human Immunodeficiency Virus Type 1 gp120: Role of Glycosylation in the Correct Folding of the V1/V2 Domain. J. Virol., 69:2271-2278, 1995. Most epitopes based only on numbering. PubMed ID: 7533854. Show all entries for this paper.

Yoshiyama1994 H. Yoshiyama, H.-M. Mo, J. P. Moore, and D. D. Ho. Characterization of Mutants of Human Immunodeficiency Virus Type 1 That Have Escaped Neutralization by Monoclonal Antibody G3-4 to the gp120 V2 Loop. J. Virol., 68:974-978, 1994. MAb G3-4 binds a conformationally sensitive epitope in the V2 loop of HIV-1 RF. RF was cultured in the presence of G3-4 to select for neutralization resistance. Three independent experiments yielded escape mutants, and sequencing revealed two V2 mutations to be responsible for the neutralization escape phenotype, 177 Y/H and 179 L/P. Experimental introduction of the 179 P substitution resulted in non-viable virus, and 177 H confirmed the resistance phenotype. PubMed ID: 7507188. Show all entries for this paper.


Displaying record number 414

Download this epitope record as JSON.

MAb ID 9284 (NEA 9284)
HXB2 Location gp160(301-312)
DNA(7125..7160)
gp160 Epitope Map
Author Location gp120(307-318 IIIB)
Research Contact Dupont de Nemours, Wilmington, Delaware
Epitope NNTRKSIRIQRG Epitope Alignment
NNTRKSIRIQRG epitope logo
Subtype B
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site

Vaccine Details

Vaccine type inactivated HIV
Vaccine strain B clade IIIB
Vaccine component HIV-1

Notes

Showing 19 of 19 notes.

References

Showing 27 of 27 references.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Cao1997 J. Cao, N. Sullivan, E. Desjardin, C. Parolin, J. Robinson, R. Wyatt, and J. Sodroski. Replication and Neutralization of Human Immunodeficiency Virus Type 1 Lacking the V1 and V2 Variable Loops of the gp120 Envelope Glycoprotein. J. Virol., :9808-9812, 1997. An HIV-1 mutant lacking the V1-V2 loops can replicate in Jurkat cells and revertants that replicate with wild-type efficiency rapidly evolve in culture. These viruses exhibited increased neutralization susceptibility to V3 loop or CD4i MAbs, but not to sCD4 or anti-CD4BS MAbs. Thus the gp120 V1 and V2 loops protect HIV-1 from some subsets of neutralizing antibodies. PubMed ID: 9371651. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Este1998 José A. Este, Cecillia Cabrera, Dominique Schols, Peter Cherepanov, Arantxa Gutierrez, Myriam Witvrouw, Christophe Pannecouque, Zeger Debyser, Robert F. Rando, Bonaventura Clotet, Jan Desmyter, and Eric De Clercq. Human Immunodeficiency Virus Glycoprotein gp120 as the Primary Target for the Antiviral Action of AR177 (Zintevir). Mol. Pharmacol., 53(2):340-345, Feb 1998. PubMed ID: 9463493. Show all entries for this paper.

Fontenot1995 J. D. Fontenot, T. C. VanCott, B. S. Parekh, C. P. Pau, J. R. George, D. L. Birx, S. Zolla-Pazner, M. K. Gorny, and J. M. Gatewood. Presentation of HIV V3 Loop Epitopes for Enhanced Antigenicity, Immunogenicity and Diagnostic Potential. AIDS, 9:1121-1129, 1995. PubMed ID: 8519447. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.

Ivanoff1991 L. A. Ivanoff, D. J. Looney, C. McDanal, J. F. Morris, F. Wong-Staal, A. J. Langlois, S. R. Petteway, Jr., and T. J. Matthews. Alteration of HIV-1 Infectivity and Neutralization by a Single Amino Acid Replacement in the V3 Loop Domain. AIDS Res. Hum. Retroviruses, 7(7):595-603, Jul 1991. PubMed ID: 1768461. Show all entries for this paper.

McKeating1992a J. A. McKeating, J. Cordell, C. J. Dean, and P. Balfe. Synergistic Interaction between Ligands Binding to the CD4 Binding Site and V3 Domain of Human Immunodeficiency Virus Type I gp120. Virology, 191:732-742, 1992. PubMed ID: 1280382. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Okada1994 T. Okada, B. K. Patterson, P. A. Otto, and M. E. Gurney. HIV Type 1 Infection of CD4+ T-Cells Depends Critically on Basic Amino Acid Residues in the V3 Domain of Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 10:803-811, 1994. PubMed ID: 7986586. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1991 Q. J. Sattentau and J. P. Moore. Conformational Changes Induced in the Human Immunodeficiency Virus Envelope Glycoprotein by Soluble CD4 Binding. J. Exp. Med., 174:407-415, 1991. sCD4 binding to gp120 induces conformational changes within envelope oligomers. This was measured on HIV-1-infected cells by the increased binding of gp120/V3 loop specific MAbs, and on the surface of virions by increased cleavage of the V3 loop by an exogenous proteinase. PubMed ID: 1713252. Show all entries for this paper.

Sattentau1993 Q. J. Sattentau, J. P. Moore, F. Vignaux, F. Traincard, and P. Poignard. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol., 67:7383-7393, 1993. PubMed ID: 7693970. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Schonning1998 K. Schonning, A. Bolmstedt, J. Novotny, O. S. Lund, S. Olofsson, and J. E. Hansen. Induction of Antibodies against Epitopes Inaccessible on the HIV Type 1 Envelope Oligomer by Immunization with Recombinant Monomeric Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:1451-1456, 1998. PubMed ID: 9824323. Show all entries for this paper.

Skinner1988 M. A. Skinner, R. Ting, A. J. Langlois, K. J. Weinhold, H. K. Lyerly, K. Javaherian, and T. J. Matthews. Characteristics of a Neutralizing Monoclonal Antibody to the HIV Envelope Glycoprotein. AIDS Res. Hum. Retroviruses, 4:187-197, 1988. PubMed ID: 2456088. Show all entries for this paper.

Skinner1988a M. A. Skinner, A. J. Langlois, C. B. McDanal, J. S. McDougal, D. P. Bolognesi, and T. J. Matthews. Neutralizing Antibodies to an Immunodominant Envelope Sequence Do Not Prevent gp120 Binding to CD4. J. Virol., 62:4195-4200, 1988. This report was an early suggestion that there are at least two classes of biologically active antibodies to HIV: one class is isolate restricted, primarily directed to a hypervariable loop structure of gp120 and not involved in CD4 binding; the second class is directed at more conserved structures that may directly block CD4 binding. PubMed ID: 2845130. Show all entries for this paper.

Sorensen1994 A. M. M. Sorensen, C. Nielsen, M. Arendrup, H. Clausen, J. O. Nielsen, E. Osinaga, A. Roseto, and J.-E. S. Hansen. Neutralization epitopes on HIV pseudotyped with HTLV-I: Conservation of carbohydrate epitopes. J. Acquir. Immune Defic. Syndr., 7:116-123, 1994. Pseudotypes were formed with HIV and HTLV-I. MAb 9284, directed at the V3 loop of gp120, failed to inhibit the infection of CD-4 negative cells with pseudotypes, but anti-HTLV serum did inhibit infection. HIV and HTLV-I appear to induce common carbohydrate neutralizing epitopes. PubMed ID: 7507991. Show all entries for this paper.

Thali1992a M. Thali, C. Furman, D. D. Ho, J. Robinson, S. Tilley, A. Pinter, and J. Sodroski. Discontinuous, Conserved Neutralization Epitopes Overlapping the CD4-Binding Region of Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 66:5635-5641, 1992. Maps the relationship between amino acid substitutions that reduce CD4-gp120 interaction, and amino acid substitutions that reduce the binding of discontinuous epitope MAbs that inhibit CD4 binding. PubMed ID: 1380099. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Trujillo1993 J. R. Trujillo, M. F. McLane, T.-H. Lee, and M. Essex. Molecular Mimicry between the Human Immunodeficiency Virus Type 1 gp120 V3 Loop and Human Brain Proteins. J. Virol., 67:7711-7715, 1993. PubMed ID: 8230494. Show all entries for this paper.

VanCott1994 T. C. VanCott, F. R. Bethke, V. R. Polonis, M. K. Gorny, S. Zolla-Pazner, R. R. Redfield, and D. L. Birx. Dissociation Rate of Antibody-gp120 Binding Interactions Is Predictive of V3-Mediated Neutralization of HIV-1. J. Immunol., 153:449-459, 1994. Using surface plasmon resonance it was found that the rate of the dissociation of the MAb-gp120 complex, but not the association rate, correlated with MAbs ability to neutralize homologous virus (measured by 50\% inhibition of p24 production). Association constants were similar for all MAbs tested, varying less than 4-fold. Dissociation rate constants were quite variable, with 100-fold differences observed. PubMed ID: 7515931. Show all entries for this paper.

VanCott1995 T. C. VanCott, F. R. Bethke, D. S. Burke, R. R. Redfield, and D. L. Birx. Lack of Induction of Antibodies Specific for Conserved, Discontinuous Epitopes of HIV-1 Envelope Glycoprotein by Candidate AIDS Vaccines. J. Immunol., 155:4100-4110, 1995. The Ab response in both HIV-1 infected and uninfected volunteers immunized with HIV-1 rec envelope subunit vaccines (Genentech gp120IIIB, MicroGeneSys gp160IIIB, or ImmunoAG gp160IIIB) preferentially induced Abs reactive only to the denatured form of gp120. This may explain the inability of the vaccinee sera to neutralize primary HIV-1 isolates. PubMed ID: 7561123. Show all entries for this paper.

Wyatt1992 R. Wyatt, M. Thali, S. Tilley, A. Pinter, M. Posner, D. Ho, J. Robinson, and J. Sodroski. Relationship of the Human Immunodeficiency Virus Type 1 gp120 Third Variable Loop to Elements of the CD4 Binding Site. J. Virol., 66:6997-7004, 1992. This paper examines mutations which alter MAb binding and neutralization. Anti-V3 MAb 9284 has enhanced binding due to a mutation in the C4 region that is also important for CD4 binding, and anti-CD4 binding MAbs F105, 1.5e and 1125H show increased precipitation of a gp120 from which the V3 loop was deleted, relative to wild type, in RIPA buffer containing non-ionic detergents. PubMed ID: 1279195. Show all entries for this paper.


Displaying record number 457

Download this epitope record as JSON.

MAb ID 19b (N70-1.9b, N701.9b, 1.9B)
HXB2 Location gp160(309-320)
DNA(7149..7184)
gp160 Epitope Map
Author Location gp120
Research Contact James Robinson, University of Connecticut, Storrs
Epitope SVHIGPGQAFYAT, SIHIGPGRAFYTT, SIRIGPGQTFYAT, RTHIGPQALYT T, SITIGPGQVFYRT, SIHLGPGQAFYAT Epitope Alignment
SVHIGPGQAFYAT, SIHIGPGRAFYTT, SIRIGPGQTFYAT, RTHIGPQALYT T, SITIGPGQVFYRT, SIHLGPGQAFYAT epitope logo
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L
Species (Isotype) human(IgG1κ)
Patient N70
Immunogen HIV-1 infection
Keywords ADCC, antibody binding site, antibody generation, antibody interactions, antibody polyreactivity, assay or method development, autoantibody or autoimmunity, binding affinity, broad neutralizer, glycosylation, neutralization, novel epitope, optimal epitope, review, structure, subtype comparisons, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity

Notes

Showing 65 of 65 notes.

References

Showing 65 of 65 references.

Isolation Paper
Robinson1990c J. E. Robinson, D. Holton, S. Pacheco-Morell, J. Liu, and H. McMurdo. Identification of Conserved and Variable Epitopes of Human Immunodeficiency Virus Type-1 (HIV-1) gp120 by Human Monoclonal Antibodies Produced by EBV Transformed Cell Lines. AIDS Res. Hum. Retroviruses, 6:567-579, 1990. PubMed ID: 1694449. Show all entries for this paper.

Berro2009 Reem Berro, Rogier W. Sanders, Min Lu, Per J. Klasse, and John P. Moore. Two HIV-1 Variants Resistant to Small Molecule CCR5 Inhibitors Differ in How They Use CCR5 for Entry. PLoS Pathog., 5(8):e1000548, Aug 2009. PubMed ID: 19680536. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley2000 J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724. Show all entries for this paper.

Bontjer2010 Ilja Bontjer, Mark Melchers, Dirk Eggink, Kathryn David, John P. Moore, Ben Berkhout, and Rogier W. Sanders. Stabilized HIV-1 Envelope Glycoprotein Trimers Lacking the V1V2 Domain, Obtained by Virus Evolution. J. Biol. Chem, 285(47):36456-36470, 19 Nov 2010. PubMed ID: 20826824. Show all entries for this paper.

Boots1997 L. J. Boots, P. M. McKenna, B. A. Arnold, P. M. Keller, M. K. Gorny, S. Zolla-Pazner, J. E. Robinson, and A. J. Conley. Anti-human immunodeficiency virus type 1 human monoclonal antibodies that bind discontinuous epitopes in the viral glycoproteins can identify mimotopes from recombinant phage peptide display libraries. AIDS Res. Hum. Retroviruses, 13:1549-59, 1997. PubMed ID: 9430247. Show all entries for this paper.

Bradley2016a Todd Bradley, Ashley Trama, Nancy Tumba, Elin Gray, Xiaozhi Lu, Navid Madani, Fatemeh Jahanbakhsh, Amanda Eaton, Shi-Mao Xia, Robert Parks, Krissey E. Lloyd, Laura L. Sutherland, Richard M. Scearce, Cindy M. Bowman, Susan Barnett, Salim S. Abdool-Karim, Scott D. Boyd, Bruno Melillo, Amos B. Smith, 3rd., Joseph Sodroski, Thomas B. Kepler, S. Munir Alam, Feng Gao, Mattia Bonsignori, Hua-Xin Liao, M Anthony Moody, David Montefiori, Sampa Santra, Lynn Morris, and Barton F. Haynes. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 12:196-207, Oct 2016. PubMed ID: 27612593. Show all entries for this paper.

Castillo-Menendez2019 Luis R. Castillo-Menendez, Hanh T. Nguyen, and Joseph Sodroski. Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J. Virol., 93(3), 1 Feb 2019. PubMed ID: 30429345. Show all entries for this paper.

Cham2006 Fatim Cham, Peng Fei Zhang, Leo Heyndrickx, Peter Bouma, Ping Zhong, Herman Katinger, James Robinson, Guido van der Groen, and Gerald V. Quinnan, Jr. Neutralization and Infectivity Characteristics of Envelope Glycoproteins from Human Immunodeficiency Virus Type 1 Infected Donors Whose Sera Exhibit Broadly Cross-Reactive Neutralizing Activity. Virology, 347(1):36-51, 30 Mar 2006. PubMed ID: 16378633. Show all entries for this paper.

Chen2015 Jia Chen, James M. Kovacs, Hanqin Peng, Sophia Rits-Volloch, Jianming Lu, Donghyun Park, Elise Zablowsky, Michael S. Seaman, and Bing Chen. Effect of the Cytoplasmic Domain on Antigenic Characteristics of HIV-1 Envelope Glycoprotein. Science, 349(6244):191-195, 10 Jul 2015. PubMed ID: 26113642. Show all entries for this paper.

Depetris2012 Rafael S Depetris, Jean-Philippe Julien, Reza Khayat, Jeong Hyun Lee, Robert Pejchal, Umesh Katpally, Nicolette Cocco, Milind Kachare, Evan Massi, Kathryn B. David, Albert Cupo, Andre J. Marozsan, William C. Olson, Andrew B. Ward, Ian A. Wilson, Rogier W. Sanders, and John P Moore. Partial Enzymatic Deglycosylation Preserves the Structure of Cleaved Recombinant HIV-1 Envelope Glycoprotein Trimers. J. Biol. Chem., 287(29):24239-24254, 13 Jul 2012. PubMed ID: 22645128. Show all entries for this paper.

deTaeye2015 Steven W. de Taeye, Gabriel Ozorowski, Alba Torrents de la Peña, Miklos Guttman, Jean-Philippe Julien, Tom L. G. M. van den Kerkhof, Judith A. Burger, Laura K. Pritchard, Pavel Pugach, Anila Yasmeen, Jordan Crampton, Joyce Hu, Ilja Bontjer, Jonathan L. Torres, Heather Arendt, Joanne DeStefano, Wayne C. Koff, Hanneke Schuitemaker, Dirk Eggink, Ben Berkhout, Hansi Dean, Celia LaBranche, Shane Crotty, Max Crispin, David C. Montefiori, P. J. Klasse, Kelly K. Lee, John P. Moore, Ian A. Wilson, Andrew B. Ward, and Rogier W. Sanders. Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-Neutralizing Epitopes. Cell, 163(7):1702-1715, 17 Dec 2015. PubMed ID: 26687358. Show all entries for this paper.

deTaeye2018 Steven W. de Taeye, Alba Torrents de la Peña, Andrea Vecchione, Enzo Scutigliani, Kwinten Sliepen, Judith A. Burger, Patricia van der Woude, Anna Schorcht, Edith E. Schermer, Marit J. van Gils, Celia C. LaBranche, David C. Montefiori, Ian A. Wilson, John P. Moore, Andrew B. Ward, and Rogier W. Sanders. Stabilization of the gp120 V3 Loop through Hydrophobic Interactions Reduces the Immunodominant V3-Directed Non-Neutralizing Response to HIV-1 Envelope Trimers. J. Biol. Chem., 293(5):1688-1701, 2 Feb 2018. PubMed ID: 29222332. Show all entries for this paper.

Ding2015 Shilei Ding, Maxime Veillette, Mathieu Coutu, Jérémie Prévost, Louise Scharf, Pamela J. Bjorkman, Guido Ferrari, James E. Robinson, Christina Stürzel, Beatrice H. Hahn, Daniel Sauter, Frank Kirchhoff, George K. Lewis, Marzena Pazgier, and Andrés Finzi. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. J. Virol., 90(4):2127-2134, Feb 2016. PubMed ID: 26637462. Show all entries for this paper.

DSouza1997 M. P. D'Souza, D. Livnat, J. A. Bradac, S. H. Bridges, the AIDS Clinical Trials Group Antibody Selection Working Group, and Collaborating Investigators. Evaluation of monoclonal antibodies to human immunodeficiency virus type 1 primary isolates by neutralization assays: performance criteria for selecting candidate antibodies for clinical trials. J. Infect. Dis., 175:1056-1062, 1997. Five laboratories evaluated neutralization of nine primary B clade isolates by a coded panel of seven human MAbs to HIV-1 subtype B envelope. IgG1b12, 2G12, 2F5 showed potent and broadly cross-reactive neutralizing ability; F105, 447/52-D, 729-D, 19b did not neutralize the primary isolates. PubMed ID: 9129066. Show all entries for this paper.

Fouda2013 Genevieve G. Fouda, Tatenda Mahlokozera, Jesus F. Salazar-Gonzalez, Maria G. Salazar, Gerald Learn, Surender B. Kumar, S. Moses Dennison, Elizabeth Russell, Katherine Rizzolo, Frederick Jaeger, Fangping Cai, Nathan A. Vandergrift, Feng Gao, Beatrice Hahn, George M. Shaw, Christina Ochsenbauer, Ronald Swanstrom, Steve Meshnick, Victor Mwapasa, Linda Kalilani, Susan Fiscus, David Montefiori, Barton Haynes, Jesse Kwiek, S. Munir Alam, and Sallie R. Permar. Postnatally-Transmitted HIV-1 Envelope Variants Have Similar Neutralization-Sensitivity and Function to That of Nontransmitted Breast Milk Variants. Retrovirology, 10:3, 2013. PubMed ID: 23305422. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Gao2007 Feng Gao, Hua-Xin Liao, Beatrice H. Hahn, Norman L. Letvin, Bette T. Korber, and Barton F. Haynes. Centralized HIV-1 Envelope Immunogens and Neutralizing Antibodies. Curr. HIV Res., 5(6):572-577, Nov 2007. PubMed ID: 18045113. Show all entries for this paper.

Gauduin1996 M.-C. Gauduin, G. P. Allaway, P. J. Maddon, C. F. Barbas III, D. R. Burton, and R. A. Koup. Effective Ex Vivo Neutralization of Human Immunodeficiency Virus Type 1 in Plasma by Recombinant Immunoglobulin Molecules. J. Virol., 70:2586-2592, 1996. Virus direct from plasma from six HIV-1 infected individuals was used for neutralization assay. MAb 19b could neutralize 2/6 plasma samples, while MAb IgG1b12 could neutralize 5/6 plasma samples. CD4-based molecules were also tested: CD4-IgG2 was effective in the it ex vivo assay, but sCD4 was not. Thus, MAbs IgG1b12 and CD4-IgG2 have broad and potent it in vitro and it ex vivo neutralizing activities. PubMed ID: 8642690. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Jeffries2016 T. L. Jeffries, Jr., C. R. Sacha, J. Pollara, J. Himes, F. H. Jaeger, S. M. Dennison, E. McGuire, E. Kunz, J. A. Eudailey, A. M. Trama, C. LaBranche, G. G. Fouda, K. Wiehe, D. C. Montefiori, B. F. Haynes, H.-X. Liao, G. Ferrari, S. M. Alam, M. A. Moody, and S. R. Permar. The Function and Affinity Maturation of HIV-1 gp120-Specific Monoclonal Antibodies Derived from Colostral B Cells. Mucosal. Immunol., 9(2):414-427, Mar 2016. PubMed ID: 26242599. Show all entries for this paper.

Johnson2017 Jacklyn Johnson, Yinjie Zhai, Hamid Salimi, Nicole Espy, Noah Eichelberger, Orlando DeLeon, Yunxia O'Malley, Joel Courter, Amos B. Smith, III, Navid Madani, Joseph Sodroski, and Hillel Haim. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J. Virol., 91(15), 1 Aug 2017. PubMed ID: 28490588. Show all entries for this paper.

Joubert2010 Marisa K. Joubert, Nichole Kinsley, Alexio Capovilla, B. Trevor Sewell, Mohamed A. Jaffer, and Makobetsa Khati. A Modeled Structure of an Aptamer-gp120 Complex Provides Insight into the Mechanism of HIV-1 Neutralization. Biochemistry, 49(28):5880-5890, 20 Jul 2010. PubMed ID: 20527993. Show all entries for this paper.

Julien2015 Jean-Philippe Julien, Jeong Hyun Lee, Gabriel Ozorowski, Yuanzi Hua, Alba Torrents de la Peña, Steven W. de Taeye, Travis Nieusma, Albert Cupo, Anila Yasmeen, Michael Golabek, Pavel Pugach, P. J. Klasse, John P. Moore, Rogier W. Sanders, Andrew B. Ward, and Ian A. Wilson. Design and Structure of Two HIV-1 Clade C SOSIP.664 Trimers That Increase the Arsenal of Native-Like Env Immunogens. Proc. Natl. Acad. Sci. U.S.A., 112(38):11947-11952, 22 Sep 2015. PubMed ID: 26372963. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.

Kolchinsky2001 P. Kolchinsky, E. Kiprilov, P. Bartley, R. Rubinstein, and J. Sodroski. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J. Virol., 75(7):3435--43, Apr 2001. URL: http://jvi.asm.org/cgi/content/full/75/7/3435. PubMed ID: 11238869. Show all entries for this paper.

Kramer2007 Victor G. Kramer, Nagadenahalli B. Siddappa, and Ruth M. Ruprecht. Passive Immunization as Tool to Identify Protective HIV-1 Env Epitopes. Curr. HIV Res., 5(6):642-55, Nov 2007. PubMed ID: 18045119. Show all entries for this paper.

Kwong2002 Peter D. Kwong, Michael L. Doyle, David J. Casper, Claudia Cicala, Stephanie A. Leavitt, Shahzad Majeed, Tavis D. Steenbeke, Miro Venturi, Irwin Chaiken, Michael Fung, Hermann Katinger, Paul W. I. H. Parren, James Robinson, Donald Van Ryk, Liping Wang, Dennis R. Burton, Ernesto Freire, Richard Wyatt, Joseph Sodroski, Wayne A. Hendrickson, and James Arthos. HIV-1 Evades Antibody-Mediated Neutralization through Conformational Masking of Receptor-Binding Sites. Nature, 420(6916):678-682, 12 Dec 2002. Comment in Nature. 2002 Dec 12;420(6916):623-4. PubMed ID: 12478295. Show all entries for this paper.

Liao2006 Hua-Xin Liao, Laura L. Sutherland, Shi-Mao Xia, Mary E. Brock, Richard M. Scearce, Stacie Vanleeuwen, S. Munir Alam, Mildred McAdams, Eric A. Weaver, Zenaido Camacho, Ben-Jiang Ma, Yingying Li, Julie M. Decker, Gary J. Nabel, David C. Montefiori, Beatrice H. Hahn, Bette T. Korber, Feng Gao, and Barton F. Haynes. A Group M Consensus Envelope Glycoprotein Induces Antibodies That Neutralize Subsets of Subtype B and C HIV-1 Primary Viruses. Virology, 353(2):268-282, 30 Sep 2006. PubMed ID: 17039602. Show all entries for this paper.

Liu2015a Mengfei Liu, Guang Yang, Kevin Wiehe, Nathan I. Nicely, Nathan A. Vandergrift, Wes Rountree, Mattia Bonsignori, S. Munir Alam, Jingyun Gao, Barton F. Haynes, and Garnett Kelsoe. Polyreactivity and Autoreactivity among HIV-1 Antibodies. J. Virol., 89(1):784-798, Jan 2015. PubMed ID: 25355869. Show all entries for this paper.

McCann2005 C. M. Mc Cann, R. J. Song, and R. M. Ruprecht. Antibodies: Can They Protect Against HIV Infection? Curr. Drug Targets Infect. Disord., 5(2):95-111, Jun 2005. PubMed ID: 15975016. Show all entries for this paper.

Mondor1998 I. Mondor, S. Ugolini, and Q. J. Sattentau. Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is CD4 Independent and Gp120 Dependent and Requires Cell Surface Heparans. J. Virol., 72:3623-3634, 1998. PubMed ID: 9557643. Show all entries for this paper.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Moore1994d J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol., 68:5142-5155, 1994. Three seroconverting individuals were studied. The earliest detectable anti-gp120 antibodies were both conformational and anti-V3 loop, and could be detected only after the peak viremia has passed. No uniform pattern of autologous neutralizing anti-CD4BS or anti-V3 MAbs was observed. PubMed ID: 8035514. Show all entries for this paper.

Moore1995a J. P. Moore, A. Trkola, B. Korber, L. J. Boots, J. A. Kessler II, F. E. McCutchan, J. Mascola, D. D. Ho, J. Robinson, and A. J. Conley. A Human Monoclonal Antibody to a Complex Epitope in the V3 Region of gp120 of Human Immunodeficiency Virus Type 1 Has Broad Reactivity within and outside Clade B. J. Virol., 69:122-130, 1995. The epitope was defined as including amino acids on both sides of the loop of the V3 loop: -I----G--FY-T, where the G is the second G of the GPGR tip of the loop. This antibody bound well to gp120 molecules from clades A,B,C,E, and F, when the critical amino acids were present. Binding did not parallel neutralization however; 19b could produce a 50-fold reduction of infectivity in some primary B isolates, and in C clade isolates at low virus input concentrations, but not in isolates from all clades where binding could occur (A,E, and F). PubMed ID: 7527082. Show all entries for this paper.

Moore1995b J. P. Moore, Y. Cao, L. Qing, Q. J. Sattentau, J. Pyati, R. Koduri, J. Robinson, C. F. Barbas III, D. R. Burton, and D. D. Ho. Primary Isolates of Human Immunodeficiency Virus Type I Are Relatively Resistant to Neutralization by Monoclonal Antibodies to gp120, and Their Neutralization Is Not Predicted by Studies with Monomeric gp120. J. Virol., 69:101-109, 1995. A panel of anti-gp120 MAbs and sera from HIV-1 infected individuals was tested for its ability to neutralize primary isolates. Most MAbs bound with high affinity to gp120 monomers from the various isolates, but were not effective at neutralizing. The MAb IgG1b12, which binds to a discontinuous anti-CD4 binding site epitope, was able to neutralize most of the primary isolates. PubMed ID: 7527081. Show all entries for this paper.

Moore1995c J. P. Moore and D. D. Ho. HIV-1 Neutralization: The Consequences of Adaptation to Growth on Transformed T-Cells. AIDS, 9(suppl A):S117-S136, 1995. This review considers the relative importance of a neutralizing antibody response for the development of a vaccine, and for disease progression during the chronic phase of HIV-1 infection. It suggests that T-cell immunity may be more important. The distinction between MAbs that can neutralize primary isolates, and those that are effective at neutralizing only laboratory adapted strains is discussed in detail. Alternative conformations of envelope and non-contiguous interacting domains in gp120 are discussed. The suggestion that soluble monomeric gp120 may serve as a viral decoy that diverts the humoral immune response it in vivo is put forth. PubMed ID: 8819579. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2008 Ralph Pantophlet, Terri Wrin, Lisa A. Cavacini, James E. Robinson, and Dennis R. Burton. Neutralizing Activity of Antibodies to the V3 Loop Region of HIV-1 gp120 Relative to Their Epitope Fine Specificity. Virology, 381(2):251-260, 25 Nov 2008. PubMed ID: 18822440. Show all entries for this paper.

Park2000 E. J. Park, M. K. Gorny, S. Zolla-Pazner, and G. V. Quinnan. A global neutralization resistance phenotype of human immunodeficiency virus type 1 is determined by distinct mechanisms mediating enhanced infectivity and conformational change of the envelope complex. J. Virol., 74:4183-91, 2000. PubMed ID: 10756031. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Patel2008 Milloni B Patel, Noah G. Hoffman, and Ronald Swanstrom. Subtype-Specific Conformational Differences within the V3 Region of Subtype B and Subtype C Human Immunodeficiency Virus Type 1 Env Proteins. J. Virol., 82(2):903-916, Jan 2008. PubMed ID: 18003735. Show all entries for this paper.

Poignard2003 Pascal Poignard, Maxime Moulard, Edwin Golez, Veronique Vivona, Michael Franti, Sara Venturini, Meng Wang, Paul W. H. I. Parren, and Dennis R. Burton. Heterogeneity of Envelope Molecules Expressed on Primary Human Immunodeficiency Virus Type 1 Particles as Probed by the Binding of Neutralizing and Nonneutralizing Antibodies. J. Virol., 77(1):353-365, Jan 2003. PubMed ID: 12477840. Show all entries for this paper.

Prevost2018 Jérémie Prévost, Jonathan Richard, Shilei Ding, Beatriz Pacheco, Roxanne Charlebois, Beatrice H Hahn, Daniel E Kaufmann, and Andrés Finzi. Envelope Glycoproteins Sampling States 2/3 Are Susceptible to ADCC by Sera from HIV-1-Infected Individuals. Virology, 515:38-45, Feb 2018. PubMed ID: 29248757. Show all entries for this paper.

Pugach2015 Pavel Pugach, Gabriel Ozorowski, Albert Cupo, Rajesh Ringe, Anila Yasmeen, Natalia de Val, Ronald Derking, Helen J. Kim, Jacob Korzun, Michael Golabek, Kevin de Los Reyes, Thomas J. Ketas, Jean-Philippe Julien, Dennis R. Burton, Ian A. Wilson, Rogier W. Sanders, P. J. Klasse, Andrew B. Ward, and John P. Moore. A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene. J. Virol., 89(6):3380-3395, Mar 2015. PubMed ID: 25589637. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.

Sanders2013 Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931. Show all entries for this paper.

Sattentau1995 Q. J. Sattentau, S. Zolla-Pazner, and P. Poignard. Epitope Exposure on Functional, Oligomeric HIV-1 gp41 Molecules. Virology, 206:713-717, 1995. Most gp41 epitopes are masked when associated with gp120 on the cell surface. Weak binding of anti-gp41 MAbs can be enhanced by treatment with sCD4. MAb 2F5 binds to a membrane proximal epitope which binds in the presence of gp120 without sCD4. PubMed ID: 7530400. Show all entries for this paper.

Sattentau1995b Q. J. Sattentau. Conservation of HIV-1 gp120 Neutralizing Epitopes after Formalin Inactivation. AIDS, 9:1383-1385, 1995. PubMed ID: 8605064. Show all entries for this paper.

Schiffner2016 Torben Schiffner, Natalia de Val, Rebecca A. Russell, Steven W. de Taeye, Alba Torrents de la Peña, Gabriel Ozorowski, Helen J. Kim, Travis Nieusma, Florian Brod, Albert Cupo, Rogier W. Sanders, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J. Virol., 90(2):813-828, 28 Oct 2015. PubMed ID: 26512083. Show all entries for this paper.

Schiffner2018 Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590. Show all entries for this paper.

Schulke2002 Norbert Schulke, Mika S. Vesanen, Rogier W. Sanders, Ping Zhu, Min Lu, Deborah J. Anselma, Anthony R. Villa, Paul W. H. I. Parren, James M. Binley, Kenneth H. Roux, Paul J. Maddon, John P. Moore, and William C. Olson. Oligomeric and Conformational Properties of a Proteolytically Mature, Disulfide-Stabilized Human Immunodeficiency Virus Type 1 gp140 Envelope Glycoprotein. J. Virol., 76(15):7760-76, Aug 2002. PubMed ID: 12097589. Show all entries for this paper.

Scott1990 C. F. Scott, Jr., S. Silver, A. T. Profy, S. D. Putney, A. Langlois, K. Weinhold, and J. E. Robinson. Human Monoclonal Antibody That Recognizes the V3 Region of Human Immunodeficiency Virus gp120 and Neutralizes the Human T-Lymphotropic Virus Type IIIMN Strain. Proc. Natl. Acad. Sci. U.S.A., 87:8597-8601, 1990. PubMed ID: 1700435. Show all entries for this paper.

Selvarajah2005 Suganya Selvarajah, Bridget Puffer, Ralph Pantophlet, Mansun Law, Robert W. Doms, and Dennis R. Burton. Comparing Antigenicity and Immunogenicity of Engineered gp120. J. Virol., 79(19):12148-12163, Oct 2005. PubMed ID: 16160142. Show all entries for this paper.

Sheppard2007a Neil C. Sheppard, Sarah L. Davies, Simon A. Jeffs, Sueli M. Vieira, and Quentin J. Sattentau. Production and Characterization of High-Affinity Human Monoclonal Antibodies to Human Immunodeficiency Virus Type 1 Envelope Glycoproteins in a Mouse Model Expressing Human Immunoglobulins. Clin. Vaccine Immunol., 14(2):157-167, Feb 2007. PubMed ID: 17167037. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Trkola1998 A. Trkola, T. Ketas, V. N. Kewalramani, F. Endorf, J. M. Binley, H. Katinger, J. Robinson, D. R. Littman, and J. P. Moore. Neutralization Sensitivity of Human Immunodeficiency Virus Type 1 Primary Isolates to Antibodies and CD4-Based Reagents Is Independent of Coreceptor Usage. J. Virol., 72:1876-1885, 1998. PubMed ID: 9499039. Show all entries for this paper.

Ugolini1997 S. Ugolini, I. Mondor, P. W. H. I Parren, D. R. Burton, S. A. Tilley, P. J. Klasse, and Q. J. Sattentau. Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line-Adapted HIV-1 Neutralization. J. Exp. Med., 186:1287-1298, 1997. PubMed ID: 9334368. Show all entries for this paper.

Witt2017 Kristen C. Witt, Luis Castillo-Menendez, Haitao Ding, Nicole Espy, Shijian Zhang, John C. Kappes, and Joseph Sodroski. Antigenic Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Precursor Incorporated into Nanodiscs. PLoS One, 12(2):e0170672, 2017. PubMed ID: 28151945. Show all entries for this paper.

Wu1996 L. Wu, N. P. Gerard, R. Wyatt, H. Choe, C. Parolin, N. Ruffing, A. Borsetti, A. A. Cardoso, E. Desjardin, W. Newman, C. Gerard, and J. Sodroski. CD4-Induced Interaction of Primary HIV-1 gp120 Glycoproteins with the Chemokine Receptor CCR-5. Nature, 384:179-183, 1996. Results suggest that HIV-1 attachment to CD4 creates a high-affinity binding site for CCR-5, leading to membrane fusion and virus entry. CD4-induced or V3 neutralizing MAbs block the interaction of gp120-CD4 complexes with CCR-5. PubMed ID: 8906795. Show all entries for this paper.

Yasmeen2014 Anila Yasmeen, Rajesh Ringe, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Dennis R. Burton, Andrew B. Ward, Ian A. Wilson, Rogier W. Sanders, John P. Moore, and Per Johan Klasse. Differential Binding of Neutralizing and Non-Neutralizing Antibodies to Native-Like Soluble HIV-1 Env Trimers, Uncleaved Env Proteins, and Monomeric Subunits. Retrovirology, 11:41, 2014. PubMed ID: 24884783. Show all entries for this paper.

Zhang2002 Peng Fei Zhang, Peter Bouma, Eun Ju Park, Joseph B. Margolick, James E. Robinson, Susan Zolla-Pazner, Michael N. Flora, and Gerald V. Quinnan, Jr. A Variable Region 3 (V3) Mutation Determines a Global Neutralization Phenotype and CD4-Independent Infectivity of a Human Immunodeficiency Virus Type 1 Envelope Associated with a Broadly Cross-Reactive, Primary Virus-Neutralizing Antibody Response. J. Virol., 76(2):644-655, Jan 2002. PubMed ID: 11752155. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 429

Download this epitope record as JSON.

MAb ID 110.5
HXB2 Location gp160(310-317)
DNA(7152..7175)
gp160 Epitope Map
Author Location gp120(308-328 BRU)
Research Contact E. Kinney-Thomas or Genetic Systems, Seattle WA
Epitope QRGPGRAF Epitope Alignment
QRGPGRAF epitope logo
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L
Species (Isotype) mouse(IgG1κ)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody interactions, binding affinity

Vaccine Details

Vaccine type HIV infected-cell lysate
Vaccine strain B clade BRU
Vaccine component HIV-1

Notes

Showing 15 of 15 notes.

References

Showing 20 of 20 references.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Cordell1991 J. Cordell, J. P. Moore, C. J. Dean, P. J. Klasse, R. A. Weiss, and J. A. McKeating. Rat Monoclonal Antibodies to Nonoverlapping Epitopes of Human Immunodeficiency Virus Type I gp120 Block CD4 Binding In Vitro. Virology, 185:72-79, 1991. PubMed ID: 1718090. Show all entries for this paper.

Jeffs1996 S. A. Jeffs, J. McKeating, S. Lewis, H. Craft, D. Biram, P. E. Stephens, and R. L. Brady. Antigenicity of truncated forms of the human immunodeficiency virus type 1 envelope glycoprotein. J. Gen. Virol., 77:1403-1410, 1996. PubMed ID: 8757980. Show all entries for this paper.

Klasse1993b P. Klasse, J. A. McKeating, M. Schutten, M. S. Reitz, Jr., and M. Robert-Guroff. An Immune-Selected Point Mutation in the Transmembrane Protein of Human Immunodeficiency Virus Type 1 (HXB2-Env:Ala 582(--> Thr)) Decreases Viral Neutralization by Monoclonal Antibodies to the CD4-Binding Site. Virology, 196:332-337, 1993. PubMed ID: 8356803. Show all entries for this paper.

Langedijk1992 J. P. M. Langedijk, N. K. T. Back, E. Kinney-Thomas, C. Bruck, M. Francotte, J. Goudsmit, and R. H. Meloen. Comparison and Fine Mapping of Both High and Low Neutralizing Monoclonal Antibodies against the Principal Neutralization Domain of HIV-1. Arch. Virol., 126:129-146, 1992. PubMed ID: 1381908. Show all entries for this paper.

McDougal1996 J. S. McDougal, M. S. Kennedy, S. L. Orloff, J. K. A. Nicholson, and T. J. Spira. Mechanisms of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralization: Irreversible Inactivation of Infectivity by Anti-HIV-1 Antibody. J. Virol., 70:5236-5245, 1996. Studies of polyclonal sera autologous virus inactivation indicates that in individuals over time, viral populations emerge that are resistant to inactivating effects of earlier sera. PubMed ID: 8764033. Show all entries for this paper.

McKeating1992a J. A. McKeating, J. Cordell, C. J. Dean, and P. Balfe. Synergistic Interaction between Ligands Binding to the CD4 Binding Site and V3 Domain of Human Immunodeficiency Virus Type I gp120. Virology, 191:732-742, 1992. PubMed ID: 1280382. Show all entries for this paper.

Moore1990 J. P. Moore, J. A. McKeating, R. A. Weiss, and Q. J. Sattentau. Dissociation of gp120 from HIV-1 Virions Induced by Soluble CD4. Science, 250:1139-1142, 1990. PubMed ID: 2251501. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Pirofski1993 L.-A. Pirofski, E. K. Thomas, and M. D. Scharff. Variable region gene utilization and mutation in a group of neutralizing murine anti-human immunodeficiency virus type 1 principal neutralizing determinant antibodies. AIDS Res. Hum. Retroviruses, 9:41-49, 1993. Observed restricted subset of murine V heavy and light chain gene elements in a set of 5 antibodies that bind to the tip of the V3 loop. PubMed ID: 7678971. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Reitz1988 M. S. Reitz, Jr., C. Wilson, C. Naugle, and M. Robert-Guroff. Generation of a Neutralization-Resistant Variant of HIV-1 Is Due to Selection for a Point Mutation in the Envelope Gene. Cell, 54:57-63, 1988. Growth of HXB2 in the constant presence of a neutralizing antiserum yielded a viral population resistant to the same serum. gp41 mutation 582 (Ala to Thr) conferred the resistant phenotype. PubMed ID: 2838179. Show all entries for this paper.

Sattentau1991 Q. J. Sattentau and J. P. Moore. Conformational Changes Induced in the Human Immunodeficiency Virus Envelope Glycoprotein by Soluble CD4 Binding. J. Exp. Med., 174:407-415, 1991. sCD4 binding to gp120 induces conformational changes within envelope oligomers. This was measured on HIV-1-infected cells by the increased binding of gp120/V3 loop specific MAbs, and on the surface of virions by increased cleavage of the V3 loop by an exogenous proteinase. PubMed ID: 1713252. Show all entries for this paper.

Sattentau1995 Q. J. Sattentau, S. Zolla-Pazner, and P. Poignard. Epitope Exposure on Functional, Oligomeric HIV-1 gp41 Molecules. Virology, 206:713-717, 1995. Most gp41 epitopes are masked when associated with gp120 on the cell surface. Weak binding of anti-gp41 MAbs can be enhanced by treatment with sCD4. MAb 2F5 binds to a membrane proximal epitope which binds in the presence of gp120 without sCD4. PubMed ID: 7530400. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Thomas1988 E. Kinney Thomas, J. N. Weber, J. McClure, P. R. Clapham, M. C. Singhal, M. K. Shriver, and R. A. Weiss. Neutralizing Monoclonal Antibodies to the AIDS Virus. AIDS, 2:25-29, 1988. PubMed ID: 2451922. Show all entries for this paper.

Ugolini1997 S. Ugolini, I. Mondor, P. W. H. I Parren, D. R. Burton, S. A. Tilley, P. J. Klasse, and Q. J. Sattentau. Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line-Adapted HIV-1 Neutralization. J. Exp. Med., 186:1287-1298, 1997. PubMed ID: 9334368. Show all entries for this paper.


Displaying record number 500

Download this epitope record as JSON.

MAb ID 447-52D (447/52-DII, 447-52-D, 447d, 447-52-D, 447-D, 447, 447D, 447D-52)
HXB2 Location gp160(312-315)
DNA(7158..7169)
gp160 Epitope Map
Author Location gp120( MN)
Research Contact Dr. Susan Zolla-Pazner, NYU Med Center NY, NY; Veteran Affairs Med Center NY, NY; or Cellular Products Inc, Buffalo, NY,
Epitope GPGR Epitope Alignment
GPGR epitope logo
Subtype B
Ab Type gp120 V3 // V3 glycan (V3g)
Neutralizing L P  View neutralization details
Contacts and Features View contacts and features
Species (Isotype) human(IgG3λ)
Patient  
Immunogen HIV-1 infection
Keywords acute/early infection, ADCC, antibody binding site, antibody generation, antibody interactions, antibody lineage, antibody sequence, assay or method development, binding affinity, broad neutralizer, co-receptor, complement, computational epitope prediction, dendritic cells, dynamics, elite controllers, enhancing activity, escape, genital and mucosal immunity, glycosylation, HIV-2, kinetics, mimics, mimotopes, neutralization, optimal epitope, polyclonal antibodies, review, SIV, structure, subtype comparisons, supervised treatment interruptions (STI), Th2, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity, viral fitness and reversion

Notes

Showing 219 of 219 notes.

References

Showing 222 of 222 references.

Isolation Paper
Buchbinder1992 A. Buchbinder, S. Karwowska, M. K. Gorny, S. T. Burda, and S. Zolla-Pazner. Synergy between Human Monoclonal Antibodies to HIV Extends Their Effective Biologic Activity against Homologous and Divergent Strains. AIDS Res. Hum. Retroviruses, 8:425-427, 1992. The anti-gp120 V3 MAb 447-D and the anti- gp120 CD4 BS MAb 588-D showed synergistic neutralization. PubMed ID: 1466965. Show all entries for this paper.

Agarwal2011 Alpna Agarwal, Catarina E. Hioe, James Swetnam, Susan Zolla-Pazner, and Timothy Cardozo. Quantitative Assessment of Masking of Neutralization Epitopes in HIV-1. Vaccine, 29(39):6736-41, 9 Sep 2011. PubMed ID: 21216319. Show all entries for this paper.

Banerjee2009 Kaustuv Banerjee, Sofija Andjelic, Per Johan Klasse, Yun Kang, Rogier W. Sanders, Elizabeth Michael, Robert J. Durso, Thomas J. Ketas, William C. Olson, and John P. Moore. Enzymatic Removal of Mannose Moieties Can Increase the Immune Response to HIV-1 gp120 In Vivo. Virology, 389(1-2):108-121, 20 Jun 2009. PubMed ID: 19410272. Show all entries for this paper.

Baum2010 Linda L. Baum. Role of Humoral Immunity in Host Defense Against HIV. Curr HIV/AIDS Rep, 7(1):11-18, Feb 2010. PubMed ID: 20425053. Show all entries for this paper.

Beauparlant2017 David Beauparlant, Peter Rusert, Carsten Magnus, Claus Kadelka, Jacqueline Weber, Therese Uhr, Osvaldo Zagordi, Corinna Oberle, Maria J. Duenas-Decamp, Paul R. Clapham, Karin J. Metzner, Huldrych F. Gunthard, and Alexandra Trkola. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog, 13(3):e1006255 doi, Mar 2017. PubMed ID: 28264054 Show all entries for this paper.

Beddows1999 S. Beddows, S. Lister, R. Cheingsong, C. Bruck, and J. Weber. Comparison of the Antibody Repertoire Generated in Healthy Volunteers following Immunization with a Monomeric Recombinant gp120 Construct Derived from a CCR5/CXCR4-Using Human Immunodeficiency Virus Type 1 Isolate with Sera from Naturally Infected Individuals. J. Virol., 73:1740-1745, 1999. PubMed ID: 9882391. Show all entries for this paper.

Beddows2005a Simon Beddows, Natalie N. Zheng, Carolina Herrera, Elizabeth Michael, Kelly Barnes, John P. Moore, Rod S. Daniels, and Jonathan N. Weber. Neutralization Sensitivity of HIV-1 Env-Pseudotyped Virus Clones is Determined by Co-Operativity between Mutations Which Modulate the CD4-Binding Site and Those That Affect gp120-gp41 Stability. Virology, 337(1):136-148, 20 Jun 2005. PubMed ID: 15914227. Show all entries for this paper.

Berro2009 Reem Berro, Rogier W. Sanders, Min Lu, Per J. Klasse, and John P. Moore. Two HIV-1 Variants Resistant to Small Molecule CCR5 Inhibitors Differ in How They Use CCR5 for Entry. PLoS Pathog., 5(8):e1000548, Aug 2009. PubMed ID: 19680536. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley2003 James M. Binley, Charmagne S. Cayanan, Cheryl Wiley, Norbert Schülke, William C. Olson, and Dennis R. Burton. Redox-Triggered Infection by Disulfide-Shackled Human Immunodeficiency Virus Type 1 Pseudovirions. J. Virol., 77(10):5678-5684, May 2003. PubMed ID: 12719560. Show all entries for this paper.

Binley2004 James M. Binley, Terri Wrin, Bette Korber, Michael B. Zwick, Meng Wang, Colombe Chappey, Gabriela Stiegler, Renate Kunert, Susan Zolla-Pazner, Hermann Katinger, Christos J. Petropoulos, and Dennis R. Burton. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. J. Virol., 78(23):13232-13252, Dec 2004. PubMed ID: 15542675. Show all entries for this paper.

Binley2006 James M. Binley, Stacie Ngo-Abdalla, Penny Moore, Michael Bobardt, Udayan Chatterji, Philippe Gallay, Dennis R. Burton, Ian A. Wilson, John H. Elder, and Aymeric de Parseval. Inhibition of HIV Env Binding to Cellular Receptors by Monoclonal Antibody 2G12 as Probed by Fc-Tagged gp120. Retrovirology, 3:39, 2006. PubMed ID: 16817962. Show all entries for this paper.

Binley2008 James M. Binley, Elizabeth A. Lybarger, Emma T. Crooks, Michael S. Seaman, Elin Gray, Katie L. Davis, Julie M. Decker, Diane Wycuff, Linda Harris, Natalie Hawkins, Blake Wood, Cory Nathe, Douglas Richman, Georgia D. Tomaras, Frederic Bibollet-Ruche, James E. Robinson, Lynn Morris, George M. Shaw, David C. Montefiori, and John R. Mascola. Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C. J. Virol., 82(23):11651-11668, Dec 2008. PubMed ID: 18815292. Show all entries for this paper.

Binley2010 James M Binley, Yih-En Andrew Ban, Emma T. Crooks, Dirk Eggink, Keiko Osawa, William R. Schief, and Rogier W. Sanders. Role of Complex Carbohydrates in Human Immunodeficiency Virus Type 1 Infection and Resistance to Antibody Neutralization. J. Virol., 84(11):5637-5655, Jun 2010. PubMed ID: 20335257. Show all entries for this paper.

Bontjer2010 Ilja Bontjer, Mark Melchers, Dirk Eggink, Kathryn David, John P. Moore, Ben Berkhout, and Rogier W. Sanders. Stabilized HIV-1 Envelope Glycoprotein Trimers Lacking the V1V2 Domain, Obtained by Virus Evolution. J. Biol. Chem, 285(47):36456-36470, 19 Nov 2010. PubMed ID: 20826824. Show all entries for this paper.

Boots1997 L. J. Boots, P. M. McKenna, B. A. Arnold, P. M. Keller, M. K. Gorny, S. Zolla-Pazner, J. E. Robinson, and A. J. Conley. Anti-human immunodeficiency virus type 1 human monoclonal antibodies that bind discontinuous epitopes in the viral glycoproteins can identify mimotopes from recombinant phage peptide display libraries. AIDS Res. Hum. Retroviruses, 13:1549-59, 1997. PubMed ID: 9430247. Show all entries for this paper.

Bricault2018 Christine A. Bricault, James M. Kovacs, Alexander Badamchi-Zadeh, Krisha McKee, Jennifer L. Shields, Bronwyn M. Gunn, George H. Neubauer, Fadi Ghantous, Julia Jennings, Lindsey Gillis, James Perry, Joseph P. Nkolola, Galit Alter, Bing Chen, Kathryn E. Stephenson, Nicole Doria-Rose, John R. Mascola, Michael S. Seaman, and Dan H. Barouch. Neutralizing Antibody Responses following Long-Term Vaccination with HIV-1 Env gp140 in Guinea Pigs. J. Virol., 92(13), 1 Jul 2018. PubMed ID: 29643249. Show all entries for this paper.

Burke2009 Valicia Burke, Constance Williams, Madhav Sukumaran, Seung-Sup Kim, Huiguang Li, Xiao-Hong Wang, Miroslaw K. Gorny, Susan Zolla-Pazner, and Xiang-Peng Kong. Structural Basis of the Cross-Reactivity of Genetically Related Human Anti-HIV-1 mAbs: Implications for Design of V3-Based Immunogens. Structure, 17(11):1538-1546, 11 Nov 2009. PubMed ID: 19913488. Show all entries for this paper.

Burton2005 Dennis R. Burton, Robyn L. Stanfield, and Ian A. Wilson. Antibody vs. HIV in a Clash of Evolutionary Titans. Proc. Natl. Acad. Sci. U.S.A., 102(42):14943-14948, 18 Oct 2005. PubMed ID: 16219699. Show all entries for this paper.

Cai2017 Yongfei Cai, Selen Karaca-Griffin, Jia Chen, Sai Tian, Nicholas Fredette, Christine E. Linton, Sophia Rits-Volloch, Jianming Lu, Kshitij Wagh, James Theiler, Bette Korber, Michael S. Seaman, Stephen C. Harrison, Andrea Carfi, and Bing Chen. Antigenicity-Defined Conformations of an Extremely Neutralization-Resistant HIV-1 Envelope Spike. Proc. Natl. Acad. Sci. U.S.A., 114(17):4477-4482, 25 Apr 2017. PubMed ID: 28396421. Show all entries for this paper.

Carbonetti2014 Sara Carbonetti, Brian G. Oliver, Jolene Glenn, Leonidas Stamatatos, and D. Noah Sather. Soluble HIV-1 Envelope Immunogens Derived from an Elite Neutralizer Elicit Cross-Reactive V1V2 Antibodies and Low Potency Neutralizing Antibodies. PLoS One, 9(1):e86905, 2014. PubMed ID: 24466285. Show all entries for this paper.

Cardozo2009 Timothy Cardozo, James Swetnam, Abraham Pinter, Chavdar Krachmarov, Arthur Nadas, David Almond, and Susan Zolla-Pazner. Worldwide Distribution of HIV Type 1 Epitopes Recognized by Human Anti-V3 Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 25(4):441-450, Apr 2009. PubMed ID: 19320565. Show all entries for this paper.

Cavacini1993 L. A. Cavacini, C. L. Emes, J. Power, A. Buchbinder, S. Zolla-Pazner, and M. R. Posner. Human Monoclonal Antibodies to the V3 Loop of HIV-1 gp120 Mediate Variable and Distinct Effects on Binding and Viral Neutralization by a Human Monoclonal Antibody to the CD4 Binding Site. J. Acquir. Immune Defic. Syndr., 6:353-358, 1993. PubMed ID: 8455141. Show all entries for this paper.

Chakraborty2006 Kausik Chakraborty, Venuka Durani, Edward Roshan Miranda, Michael Citron, Xiaoping Liang, William Schleif, Joseph G. Joyce, and Raghavan Varadarajan. Design of Immunogens That Present the Crown of the HIV-1 V3 Loop in a Conformation Competent to Generate 447-52D-Like Antibodies. Biochem. J., 399(3):483-491, 1 Nov 2006. PubMed ID: 16827663. Show all entries for this paper.

Cham2006 Fatim Cham, Peng Fei Zhang, Leo Heyndrickx, Peter Bouma, Ping Zhong, Herman Katinger, James Robinson, Guido van der Groen, and Gerald V. Quinnan, Jr. Neutralization and Infectivity Characteristics of Envelope Glycoproteins from Human Immunodeficiency Virus Type 1 Infected Donors Whose Sera Exhibit Broadly Cross-Reactive Neutralizing Activity. Virology, 347(1):36-51, 30 Mar 2006. PubMed ID: 16378633. Show all entries for this paper.

Ching2008 Lance K. Ching, Giorgos Vlachogiannis, Katherine A. Bosch, and Leonidas Stamatatos. The First Hypervariable Region of the gp120 Env Glycoprotein Defines the Neutralizing Susceptibility of Heterologous Human Immunodeficiency Virus Type 1 Isolates to Neutralizing Antibodies Elicited by the SF162gp140 Immunogen. J. Virol., 82(2):949-956, Jan 2008. PubMed ID: 18003732. Show all entries for this paper.

Ching2010 Lance Ching and Leonidas Stamatatos. Alterations in the Immunogenic Properties of Soluble Trimeric Human Immunodeficiency Virus Type 1 Envelope Proteins Induced by Deletion or Heterologous Substitutions of the V1 Loop. J. Virol., 84(19):9932-9946, Oct 2010. PubMed ID: 20660181. Show all entries for this paper.

Conley1994 A. J. Conley, M. K. Gorny, J. A. Kessler, II, L. J. Boots, M. Ossorio-Castro, S. Koenig, D. W. Lineberger, E. A. Emini, C. Williams, and S. Zolla-Pazner. Neutralization of Primary Human Immunodeficiency Virus Type 1 Isolates by the Broadly Reactive Anti-V3 Monoclonal Antibody 447-52D. J. Virol., 68:6994-7000, 1994. PubMed ID: 7933081. Show all entries for this paper.

Connor1998 R. I. Connor, B. T. Korber, B. S. Graham, B. H. Hahn, D. D. Ho, B. D. Walker, A. U. Neumann, S. H. Vermund, J. Mestecky, S. Jackson, E. Fenamore, Y. Cao, F. Gao, S. Kalams, K. J. Kunstman, D. McDonald, N. McWilliams, A. Trkola, J. P. Moore, and S. M. Wolinsky. Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines. J. Virol., 72:1552-76, 1998. No gp120-vaccine induced antibodies in a human trial of gp120 MN and SF2 could neutralize the primary viruses that infected the vaccinees. The primary isolates from the infected vaccinees were shown not to be particularly refractive to neutralization by their susceptibility to a panel of neutralizing MAbs. PubMed ID: 9445059. Show all entries for this paper.

Corti2010 Davide Corti, Johannes P. M. Langedijk, Andreas Hinz, Michael S. Seaman, Fabrizia Vanzetta, Blanca M. Fernandez-Rodriguez, Chiara Silacci, Debora Pinna, David Jarrossay, Sunita Balla-Jhagjhoorsingh, Betty Willems, Maria J. Zekveld, Hanna Dreja, Eithne O'Sullivan, Corinna Pade, Chloe Orkin, Simon A. Jeffs, David C. Montefiori, David Davis, Winfried Weissenhorn, Áine McKnight, Jonathan L. Heeney, Federica Sallusto, Quentin J. Sattentau, Robin A. Weiss, and Antonio Lanzavecchia. Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals. PLoS One, 5(1):e8805, 2010. PubMed ID: 20098712. Show all entries for this paper.

Crooks2005 Emma T. Crooks, Penny L. Moore, Douglas Richman, James Robinson, Jeffrey A. Crooks, Michael Franti, Norbert Schülke, and James M. Binley. Characterizing Anti-HIV Monoclonal Antibodies and Immune Sera by Defining the Mechanism of Neutralization. Hum Antibodies, 14(3-4):101-113, 2005. PubMed ID: 16720980. Show all entries for this paper.

Davenport2011 Thaddeus M. Davenport, Della Friend, Katharine Ellingson, Hengyu Xu, Zachary Caldwell, George Sellhorn, Zane Kraft, Roland K. Strong, and Leonidas Stamatatos. Binding Interactions between Soluble HIV Envelope Glycoproteins and Quaternary-Structure-Specific Monoclonal Antibodies PG9 and PG16. J. Virol., 85(14):7095-7107, Jul 2011. PubMed ID: 21543501. Show all entries for this paper.

Davis2009 Katie L. Davis, Frederic Bibollet-Ruche, Hui Li, Julie M. Decker, Olaf Kutsch, Lynn Morris, Aidy Salomon, Abraham Pinter, James A. Hoxie, Beatrice H. Hahn, Peter D. Kwong, and George M. Shaw. Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. J. Virol., 83(3):1240-1259, Feb 2009. PubMed ID: 19019969. Show all entries for this paper.

Depetris2012 Rafael S Depetris, Jean-Philippe Julien, Reza Khayat, Jeong Hyun Lee, Robert Pejchal, Umesh Katpally, Nicolette Cocco, Milind Kachare, Evan Massi, Kathryn B. David, Albert Cupo, Andre J. Marozsan, William C. Olson, Andrew B. Ward, Ian A. Wilson, Rogier W. Sanders, and John P Moore. Partial Enzymatic Deglycosylation Preserves the Structure of Cleaved Recombinant HIV-1 Envelope Glycoprotein Trimers. J. Biol. Chem., 287(29):24239-24254, 13 Jul 2012. PubMed ID: 22645128. Show all entries for this paper.

Derby2006 Nina R. Derby, Zane Kraft, Elaine Kan, Emma T. Crooks, Susan W. Barnett, Indresh K. Srivastava, James M. Binley, and Leonidas Stamatatos. Antibody Responses Elicited in Macaques Immunized with Human Immunodeficiency Virus Type 1 (HIV-1) SF162-Derived gp140 Envelope Immunogens: Comparison with Those Elicited during Homologous Simian/Human Immunodeficiency Virus SHIVSF162P4 and Heterologous HIV-1 Infection. J. Virol., 80(17):8745-8762, Sep 2006. PubMed ID: 16912322. Show all entries for this paper.

Derby2007 Nina R. Derby, Sean Gray, Elizabeth Wayner, Dwayne Campogan, Giorgos Vlahogiannis, Zane Kraft, Susan W. Barnett, Indresh K. Srivastava, and Leonidas Stamatatos. Isolation and Characterization of Monoclonal Antibodies Elicited by Trimeric HIV-1 Env gp140 Protein Immunogens. Virology, 366(2):433-445, 30 Sep 2007. PubMed ID: 17560621. Show all entries for this paper.

Dervillez2010 Xavier Dervillez, Volker Klaukien, Ralf Dürr, Joachim Koch, Alexandra Kreutz, Thomas Haarmann, Michaela Stoll, Donghan Lee, Teresa Carlomagno, Barbara Schnierle, Kalle Möbius, Christoph Königs, Christian Griesinger, and Ursula Dietrich. Peptide Ligands Selected with CD4-Induced Epitopes on Native Dualtropic HIV-1 Envelope Proteins Mimic Extracellular Coreceptor Domains and Bind to HIV-1 gp120 Independently of Coreceptor Usage. J. Virol., 84(19):10131-10138, Oct 2010. PubMed ID: 20660187. Show all entries for this paper.

deTaeye2015 Steven W. de Taeye, Gabriel Ozorowski, Alba Torrents de la Peña, Miklos Guttman, Jean-Philippe Julien, Tom L. G. M. van den Kerkhof, Judith A. Burger, Laura K. Pritchard, Pavel Pugach, Anila Yasmeen, Jordan Crampton, Joyce Hu, Ilja Bontjer, Jonathan L. Torres, Heather Arendt, Joanne DeStefano, Wayne C. Koff, Hanneke Schuitemaker, Dirk Eggink, Ben Berkhout, Hansi Dean, Celia LaBranche, Shane Crotty, Max Crispin, David C. Montefiori, P. J. Klasse, Kelly K. Lee, John P. Moore, Ian A. Wilson, Andrew B. Ward, and Rogier W. Sanders. Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-Neutralizing Epitopes. Cell, 163(7):1702-1715, 17 Dec 2015. PubMed ID: 26687358. Show all entries for this paper.

deTaeye2018 Steven W. de Taeye, Alba Torrents de la Peña, Andrea Vecchione, Enzo Scutigliani, Kwinten Sliepen, Judith A. Burger, Patricia van der Woude, Anna Schorcht, Edith E. Schermer, Marit J. van Gils, Celia C. LaBranche, David C. Montefiori, Ian A. Wilson, John P. Moore, Andrew B. Ward, and Rogier W. Sanders. Stabilization of the gp120 V3 Loop through Hydrophobic Interactions Reduces the Immunodominant V3-Directed Non-Neutralizing Response to HIV-1 Envelope Trimers. J. Biol. Chem., 293(5):1688-1701, 2 Feb 2018. PubMed ID: 29222332. Show all entries for this paper.

Dey2008 Antu K. Dey, Kathryn B. David, Neelanjana Ray, Thomas J. Ketas, Per J. Klasse, Robert W. Doms, and John P. Moore. N-Terminal Substitutions in HIV-1 gp41 Reduce the Expression of Non-Trimeric Envelope Glycoproteins on the Virus. Virology, 372(1):187-200, 1 Mar 2008. PubMed ID: 18031785. Show all entries for this paper.

Dhillon2007 Amandeep K. Dhillon, Helen Donners, Ralph Pantophlet, Welkin E. Johnson, Julie M. Decker, George M. Shaw, Fang-Hua Lee, Douglas D. Richman, Robert W. Doms, Guido Vanham, and Dennis R. Burton. Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors. J. Virol., 81(12):6548-6562, Jun 2007. PubMed ID: 17409160. Show all entries for this paper.

Dhillon2008 Amandeep K. Dhillon, Robyn L. Stanfield, Miroslaw K. Gorny, Constance Williams, Susan Zolla-Pazner, and Ian A. Wilson. Structure Determination of an Anti-HIV-1 Fab 447-52D-Peptide Complex from an Epitaxially Twinned Data Set. Acta. Crystallogr. D Biol. Crystallogr., D64(7):792-802, Jul 2008. PubMed ID: 18566514. Show all entries for this paper.

Doria-Rose2010 Nicole A. Doria-Rose, Rachel M. Klein, Marcus G. Daniels, Sijy O'Dell, Martha Nason, Alan Lapedes, Tanmoy Bhattacharya, Stephen A. Migueles, Richard T. Wyatt, Bette T. Korber, John R. Mascola, and Mark Connors. Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. J. Virol., 84(3):1631-1636, Feb 2010. PubMed ID: 19923174. Show all entries for this paper.

Douagi2010 Iyadh Douagi, Mattias N. E. Forsell, Christopher Sundling, Sijy O'Dell, Yu Feng, Pia Dosenovic, Yuxing Li, Robert Seder, Karin Loré, John R. Mascola, Richard T. Wyatt, and Gunilla B. Karlsson Hedestam. Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates. J. Virol., 84(4):1683-1695, Feb 2010. PubMed ID: 19955308. Show all entries for this paper.

DSouza1997 M. P. D'Souza, D. Livnat, J. A. Bradac, S. H. Bridges, the AIDS Clinical Trials Group Antibody Selection Working Group, and Collaborating Investigators. Evaluation of monoclonal antibodies to human immunodeficiency virus type 1 primary isolates by neutralization assays: performance criteria for selecting candidate antibodies for clinical trials. J. Infect. Dis., 175:1056-1062, 1997. Five laboratories evaluated neutralization of nine primary B clade isolates by a coded panel of seven human MAbs to HIV-1 subtype B envelope. IgG1b12, 2G12, 2F5 showed potent and broadly cross-reactive neutralizing ability; F105, 447/52-D, 729-D, 19b did not neutralize the primary isolates. PubMed ID: 9129066. Show all entries for this paper.

Eda2006 Yasuyuki Eda, Toshio Murakami, Yasushi Ami, Tadashi Nakasone, Mari Takizawa, Kenji Someya, Masahiko Kaizu, Yasuyuki Izumi, Naoto Yoshino, Shuzo Matsushita, Hirofumi Higuchi, Hajime Matsui, Katsuaki Shinohara, Hiroaki Takeuchi, Yoshio Koyanagi, Naoki Yamamoto, and Mitsuo Honda. Anti-V3 Humanized Antibody KD-247 Effectively Suppresses Ex Vivo Generation of Human Immunodeficiency Virus Type 1 and Affords Sterile Protection of Monkeys against a Heterologous Simian/Human Immunodeficiency Virus Infection. J. Virol., 80(11):5563-5570, Jun 2006. PubMed ID: 16699037. Show all entries for this paper.

Eda2006a Yasuyuki Eda, Mari Takizawa, Toshio Murakami, Hiroaki Maeda, Kazuhiko Kimachi, Hiroshi Yonemura, Satoshi Koyanagi, Kouichi Shiosaki, Hirofumi Higuchi, Keiichi Makizumi, Toshihiro Nakashima, Kiyoshi Osatomi, Sachio Tokiyoshi, Shuzo Matsushita, Naoki Yamamoto, and Mitsuo Honda. Sequential Immunization with V3 Peptides from Primary Human Immunodeficiency Virus Type 1 Produces Cross-Neutralizing Antibodies against Primary Isolates with a Matching Narrow-Neutralization Sequence Motif. J. Virol., 80(11):5552-5562, Jun 2006. PubMed ID: 16699036. Show all entries for this paper.

Fenyo2009 Eva Maria Fenyö, Alan Heath, Stefania Dispinseri, Harvey Holmes, Paolo Lusso, Susan Zolla-Pazner, Helen Donners, Leo Heyndrickx, Jose Alcami, Vera Bongertz, Christian Jassoy, Mauro Malnati, David Montefiori, Christiane Moog, Lynn Morris, Saladin Osmanov, Victoria Polonis, Quentin Sattentau, Hanneke Schuitemaker, Ruengpung Sutthent, Terri Wrin, and Gabriella Scarlatti. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report. PLoS One, 4(2):e4505, 2009. PubMed ID: 19229336. Show all entries for this paper.

Ferrantelli2002 Flavia Ferrantelli and Ruth M. Ruprecht. Neutralizing Antibodies Against HIV --- Back in the Major Leagues? Curr. Opin. Immunol., 14(4):495-502, Aug 2002. PubMed ID: 12088685. Show all entries for this paper.

Fontenot1995 J. D. Fontenot, T. C. VanCott, B. S. Parekh, C. P. Pau, J. R. George, D. L. Birx, S. Zolla-Pazner, M. K. Gorny, and J. M. Gatewood. Presentation of HIV V3 Loop Epitopes for Enhanced Antigenicity, Immunogenicity and Diagnostic Potential. AIDS, 9:1121-1129, 1995. PubMed ID: 8519447. Show all entries for this paper.

Forsell2008 Mattias N. E. Forsell, Barna Dey, Andreas Mörner, Krisha Svehla, Sijy O'dell, Carl-Magnus Högerkorp, Gerald Voss, Rigmor Thorstensson, George M. Shaw, John R. Mascola, Gunilla B. Karlsson Hedestam, and Richard T. Wyatt. B Cell Recognition of the Conserved HIV-1 Co-Receptor Binding Site Is Altered by Endogenous Primate CD4. PLoS Pathog., 4(10):e1000171, 2008. PubMed ID: 18833294. Show all entries for this paper.

Forsman2008 Anna Forsman, Els Beirnaert, Marlén M. I. Aasa-Chapman, Bart Hoorelbeke, Karolin Hijazi, Willie Koh, Vanessa Tack, Agnieszka Szynol, Charles Kelly, Áine McKnight, Theo Verrips, Hans de Haard, and Robin A Weiss. Llama Antibody Fragments with Cross-Subtype Human Immunodeficiency Virus Type 1 (HIV-1)-Neutralizing Properties and High Affinity for HIV-1 gp120. J. Virol., 82(24):12069-12081, Dec 2008. PubMed ID: 18842738. Show all entries for this paper.

Forthal1995 D. N. Forthal, G. Landucci, M. K. Gorny, S. Zolla-Pazner, and W. E. Robinson, Jr. Functional Activities of 20 Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 11:1095-1099, 1995. A series of tests were performed on 20 human monoclonal antibodies to assess their potential therapeutic utility. Antibodies were tested for potentially harmful complement-mediated antibody enhancing activity (C-ADE), and for potentially beneficial neutralizing activity and antibody dependent cellular cytotoxicity ADCC. PubMed ID: 8554906. Show all entries for this paper.

Forthal2009 Donald N. Forthal and Christiane Moog. Fc Receptor-Mediated Antiviral Antibodies. Curr. Opin. HIV AIDS, 4(5):388-393, Sep 2009. PubMed ID: 20048702. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Gao2005a Feng Gao, Eric A. Weaver, Zhongjing Lu, Yingying Li, Hua-Xin Liao, Benjiang Ma, S Munir Alam, Richard M. Scearce, Laura L. Sutherland, Jae-Sung Yu, Julie M. Decker, George M. Shaw, David C. Montefiori, Bette T. Korber, Beatrice H. Hahn, and Barton F. Haynes. Antigenicity and Immunogenicity of a Synthetic Human Immunodeficiency Virus Type 1 Group M Consensus Envelope Glycoprotein. J. Virol., 79(2):1154-1163, Jan 2005. PubMed ID: 15613343. Show all entries for this paper.

Gazarian2013 Karlen G. Gazarian, Yadira Palacios-Rodríguez, Tatiana G. Gazarian, and Leonor Huerta. HIV-1 V3 Loop Crown Epitope-Focused Mimotope Selection by Patient Serum from Random Phage Display Libraries: Implications for the Epitope Structural Features. Mol. Immunol., 54(2):148-156, Jun 2013. PubMed ID: 23270686. Show all entries for this paper.

Gonzalez2010 Nuria Gonzalez, Amparo Alvarez, and Jose Alcami. Broadly Neutralizing Antibodies and their Significance for HIV-1 Vaccines. Curr. HIV Res., 8(8):602-612, Dec 2010. PubMed ID: 21054253. Show all entries for this paper.

Gorny1992 M. K. Gorny, A. J. Conley, S. Karwowska, A. Buchbinder, J.-Y. Xu, E. A. Emini, S. Koenig, and S. Zolla-Pazner. Neutralization of Diverse Human Immunodeficiency Virus Type 1 Variants by an Anti-V3 Human Monoclonal Antibody. J. Virol., 66:7538-7542, 1992. PubMed ID: 1433529. Show all entries for this paper.

Gorny1993 M. K. Gorny, J.-Y. Xu, S. Karwowska, A. Buchbinder, and S. Zolla-Pazner. Repertoire of Neutralizing Human Monoclonal Antibodies Specific for The V3 Domain of HIV-1 gp120. J. Immunol., 150:635-643, 1993. Characterizaton of 12 human MAbs that bind and neutralize the MN isolate with 50\% neutralization. Two of these antibodies also bound and neutralized IIIB: 447-52-D and 694/98-D; all others could not bind HXB2 peptides. All but two, 418-D and 412-D could bind to SF2 peptides. PubMed ID: 7678279. Show all entries for this paper.

Gorny1994 M. K. Gorny, J. P. Moore, A. J. Conley, S. Karwowska, J. Sodroski, C. Williams, S. Burda, L. J. Boots, and S. Zolla-Pazner. Human Anti-V2 Monoclonal Antibody That Neutralizes Primary but Not Laboratory Isolates of Human Immunodeficiency Virus Type 1. J. Virol., 68:8312-8320, 1994. Detailed characterization of the MAb 697-D. PubMed ID: 7525987. Show all entries for this paper.

Gorny1997 Miroslaw K. Gorny, Thomas C. VanCott, Catarina Hioe, Zimra R. Israel, Nelson L. Michael, Anthony J. Conley, Constance Williams, Joseph A. Kessler II, Padmasree Chigurupati, Sherri Burda, and Susan Zolla-Pazner. Human Monoclonal Antibodies to the V3 Loop of HIV-1 With Intra- and Interclade Cross-Reactivity. J. Immunol., 159:5114-5122, 1997. PubMed ID: 9366441. Show all entries for this paper.

Gorny1998 M. K. Gorny, J. R. Mascola, Z. R. Israel, T. C. VanCott, C. Williams, P. Balfe, C. Hioe, S. Brodine, S. Burda, and S. Zolla-Pazner. A Human Monoclonal Antibody Specific for the V3 Loop of HIV Type 1 Clade E Cross-Reacts with Other HIV Type 1 Clades. AIDS Res. Hum. Retroviruses, 14:213-221, 1998. PubMed ID: 9491911. Show all entries for this paper.

Gorny2000b M. K. Gorny, T. C. VanCott, C. Williams, K. Revesz, and S. Zolla-Pazner. Effects of oligomerization on the epitopes of the human immunodeficiency virus type 1 envelope glycoproteins. Virology, 267:220-8, 2000. PubMed ID: 10662617. Show all entries for this paper.

Gorny2002 Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Sandra Cohen, Victoria R. Polonis, William J. Honnen, Samuel C. Kayman, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. J. Virol., 76(18):9035-9045, Sep 2002. PubMed ID: 12186887. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Gorny2004 Miroslaw K. Gorny, Kathy Revesz, Constance Williams, Barbara Volsky, Mark K. Louder, Christopher A. Anyangwe, Chavdar Krachmarov, Samuel C. Kayman, Abraham Pinter, Arthur Nadas, Phillipe N. Nyambi, John R. Mascola, and Susan Zolla-Pazner. The V3 Loop is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. J. Virol., 78(5):2394-2404, Mar 2004. PubMed ID: 14963135. Show all entries for this paper.

Gorny2005 Miroslaw K. Gorny, Leonidas Stamatatos, Barbara Volsky, Kathy Revesz, Constance Williams, Xiao-Hong Wang, Sandra Cohen, Robert Staudinger, and Susan Zolla-Pazner. Identification of a New Quaternary Neutralizing Epitope on Human Immunodeficiency Virus Type 1 Virus Particles. J. Virol., 79(8):5232-5237, Apr 2005. PubMed ID: 15795308. Show all entries for this paper.

Gorny2006 Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Xiao-Hong Wang, Sherri Burda, Tetsuya Kimura, Frank A. J. Konings, Arthur Nádas, Christopher A. Anyangwe, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):6865-6872, Jul 2006. PubMed ID: 16809292. Show all entries for this paper.

Gorny2009 Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295. Show all entries for this paper.

Grovit-Ferbas2000 K. Grovit-Ferbas, J. F. Hsu, J. Ferbas, V. Gudeman, and I. S. Chen. Enhanced binding of antibodies to neutralization epitopes following thermal and chemical inactivation of human immunodeficiency virus type 1. J. Virol., 74(13):5802-9, Jul 2000. URL: http://jvi.asm.org/cgi/content/full/74/13/5802. PubMed ID: 10846059. Show all entries for this paper.

Grundner2005 Christoph Grundner, Yuxing Li, Mark Louder, John Mascola, Xinzhen Yang, Joseph Sodroski, and Richard Wyatt. Analysis of the Neutralizing Antibody Response Elicited in Rabbits by Repeated Inoculation with Trimeric HIV-1 Envelope Glycoproteins. Virology, 331(1):33-46, 5 Jan 2005. PubMed ID: 15582651. Show all entries for this paper.

Guzzo2018 Christina Guzzo, Peng Zhang, Qingbo Liu, Alice L. Kwon, Ferzan Uddin, Alexandra I. Wells, Hana Schmeisser, Raffaello Cimbro, Jinghe Huang, Nicole Doria-Rose, Stephen D. Schmidt, Michael A. Dolan, Mark Connors, John R. Mascola, and Paolo Lusso. Structural Constraints at the Trimer Apex Stabilize the HIV-1 Envelope in a Closed, Antibody-Protected Conformation. mBio, 9(6), 11 Dec 2018. PubMed ID: 30538178. Show all entries for this paper.

Haldar2011 Bijayesh Haldar, Sherri Burda, Constance Williams, Leo Heyndrickx, Guido Vanham, Miroslaw K. Gorny, and Phillipe Nyambi. Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies. PLoS One, 6(2):e17253, 2011. PubMed ID: 21383841. Show all entries for this paper.

Haynes2005 Barton F. Haynes, Judith Fleming, E. William St. Clair, Herman Katinger, Gabriela Stiegler, Renate Kunert, James Robinson, Richard M. Scearce, Kelly Plonk, Herman F. Staats, Thomas L. Ortel, Hua-Xin Liao, and S. Munir Alam. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 308(5730):1906-1908, 24 Jun 2005. Comment in Science 2005 Jun 24;308(5730):1878-9. PubMed ID: 15860590. Show all entries for this paper.

Haynes2006 Barton F. Haynes, Benjiang Ma, David C. Montefiori, Terri Wrin, Christos J. Petropoulos, Laura L. Sutherland, Richard M. Scearce, Cathrine. Denton, Shi-Mao Xia, Bette T. Korber, and Hua-Xin Liao. Analysis of HIV-1 Subtype B Third Variable Region Peptide Motifs for Induction of Neutralizing Antibodies against HIV-1 Primary Isolates. Virology, 345(1):44-55, 5 Feb 2006. PubMed ID: 16242749. Show all entries for this paper.

Haynes2006a Barton F. Haynes and David C. Montefiori. Aiming to Induce Broadly Reactive Neutralizing Antibody Responses with HIV-1 Vaccine Candidates. Expert Rev. Vaccines, 5(4):579-595, Aug 2006. PubMed ID: 16989638. Show all entries for this paper.

He2002 Yuxian He, William J. Honnen, Chavdar P. Krachmarov, Michael Burkhart, Samuel C. Kayman, Jose Corvalan, and Abraham Pinter. Efficient Isolation of Novel Human Monoclonal Antibodies with Neutralizing Activity Against HIV-1 from Transgenic Mice Expressing Human Ig Loci. J. Immunol., 169(1):595-605, 1 Jul 2002. PubMed ID: 12077293. Show all entries for this paper.

Hill1997 C. M. Hill, H. Deng, D. Unutmaz, V. N. Kewalramani, L. Bastiani, M. K. Gorny, S. Zolla-Pazner, and D. R. Littman. Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J. Virol., 71:6296-6304, 1997. PubMed ID: 9261346. Show all entries for this paper.

Hioe1997 C. Hioe, S. Burda, P. Chigurupati, S. Xu, and S. Zolla-Pazner. Resting Cell Neutralization Assay for HIV-1 Primary Isolates. Methods: A companion to Methods in Enzymology, 12:300-305, 1997. A technique is described for detecting the activity of neutralizing polyclonal or MAbs against HIV-1 primary isolates, using unstimulated PBMC as the target cell. PubMed ID: 9245610. Show all entries for this paper.

Hioe1997b C. E. Hioe, S. Xu, P. Chigurupati, S. Burda, C. Williams, M. K. Gorny, and S. Zolla-Pazner. Neutralization of HIV-1 Primary Isolates by Polyclonal and Monoclonal Human Antibodies. Int. Immunol., 9(9):1281-1290, Sep 1997. PubMed ID: 9310831. Show all entries for this paper.

Hioe1999 C. E. Hioe, J. E. Hildreth, and S. Zolla-Pazner. Enhanced HIV Type 1 Neutralization by Human Anti-Glycoprotein 120 Monoclonal Antibodies in the Presence of Monoclonal Antibodies to Lymphocyte Function-Associated Molecule 1. AIDS Res. Hum. Retroviruses, 15:523-531, 1999. PubMed ID: 10221529. Show all entries for this paper.

Hioe2000 C. E. Hioe, G. J. Jones, A. D. Rees, S. Ratto-Kim, D. Birx, C. Munz, M. K. Gorny, M. Tuen, and S. Zolla-Pazner. Anti-CD4-Binding Domain Antibodies Complexed with HIV Type 1 Glycoprotein 120 Inhibit CD4+ T Cell-Proliferative Responses to Glycoprotein 120. AIDS Res. Hum. Retroviruses, 16:893-905, 2000. PubMed ID: 10875615. Show all entries for this paper.

Hioe2009 Catarina E. Hioe, Maria Luisa Visciano, Rajnish Kumar, Jianping Liu, Ethan A. Mack, Rachel E. Simon, David N. Levy, and Michael Tuen. The Use of Immune Complex Vaccines to Enhance Antibody Responses against Neutralizing Epitopes on HIV-1 Envelope gp120. Vaccine, 28(2):352-360, 11 Dec 2009. PubMed ID: 19879224. Show all entries for this paper.

Hioe2010 Catarina E. Hioe, Terri Wrin, Michael S. Seaman, Xuesong Yu, Blake Wood, Steve Self, Constance Williams, Miroslaw K. Gorny, and Susan Zolla-Pazner. Anti-V3 Monoclonal Antibodies Display Broad Neutralizing Activities against Multiple HIV-1 Subtypes. PLoS One, 5(4):e10254, 2010. PubMed ID: 20421997. Show all entries for this paper.

Hogan2018 Michael J. Hogan, Angela Conde-Motter, Andrea P. O. Jordan, Lifei Yang, Brad Cleveland, Wenjin Guo, Josephine Romano, Houping Ni, Norbert Pardi, Celia C. LaBranche, David C. Montefiori, Shiu-Lok Hu, James A. Hoxie, and Drew Weissman. Increased Surface Expression of HIV-1 Envelope Is Associated with Improved Antibody Response in Vaccinia Prime/Protein Boost Immunization. Virology, 514:106-117, 15 Jan 2018. PubMed ID: 29175625. Show all entries for this paper.

Holl2006 Vincent Holl, Maryse Peressin, Thomas Decoville, Sylvie Schmidt, Susan Zolla-Pazner, Anne-Marie Aubertin, and Christiane Moog. Nonneutralizing Antibodies Are Able To Inhibit Human Immunodeficiency Virus Type 1 Replication in Macrophages and Immature Dendritic Cells. J. Virol., 80(12):6177-6181, Jun 2006. PubMed ID: 16731957. Show all entries for this paper.

Holl2006a Vincent Holl, Maryse Peressin, Sylvie Schmidt, Thomas Decoville, Susan Zolla-Pazner, Anne-Marie Aubertin, and Christiane Moog. Efficient Inhibition of HIV-1 Replication in Human Immature Monocyte-Derived Dendritic Cells by Purified Anti-HIV-1 IgG without Induction of Maturation. Blood, 107(11):4466-4474, 1 Jun 2006. PubMed ID: 16469871. Show all entries for this paper.

Hoxie2010 James A. Hoxie. Toward an Antibody-Based HIV-1 Vaccine. Annu. Rev. Med., 61:135-52, 2010. PubMed ID: 19824826. Show all entries for this paper.

Hu2007 Qinxue Hu, Naheed Mahmood, and Robin J. Shattock. High-Mannose-Specific Deglycosylation of HIV-1 gp120 Induced by Resistance to Cyanovirin-N and the Impact on Antibody Neutralization. Virology, 368(1):145-154, 10 Nov 2007. PubMed ID: 17658575. Show all entries for this paper.

Huang2005 Chih-chin Huang, Min Tang, Mei-Yun Zhang, Shahzad Majeed, Elizabeth Montabana, Robyn L. Stanfield, Dimiter S. Dimitrov, Bette Korber, Joseph Sodroski, Ian A. Wilson, Richard Wyatt, and Peter D. Kwong. Structure of a V3-Containing HIV-1 gp120 Core. Science, 310(5750):1025-1028, 11 Nov 2005. PubMed ID: 16284180. Show all entries for this paper.

Huang2010 Kuan-Hsiang G. Huang, David Bonsall, Aris Katzourakis, Emma C. Thomson, Sarah J. Fidler, Janice Main, David Muir, Jonathan N. Weber, Alexander J. Frater, Rodney E. Phillips, Oliver G. Pybus, Philip J. R. Goulder, Myra O. McClure, Graham S. Cooke, and Paul Klenerman. B-Cell Depletion Reveals a Role for Antibodies in the Control of Chronic HIV-1 Infection. Nat. Commun., 1:102, 2010. PubMed ID: 20981030. Show all entries for this paper.

Huber2007 M. Huber and A. Trkola. Humoral Immunity to HIV-1: Neutralization and Beyond. J. Intern. Med., 262(1):5-25, Jul 2007. PubMed ID: 17598812. Show all entries for this paper.

Inouye1998 P. Inouye, E. Cherry, M. Hsu, S. Zolla-Pazner, and M. A. Wainberg. Neutralizing Antibodies Directed against the V3 Loop Select for Different Escape Variants in a Virus with Mutated Reverse Transcriptase (M184V) Than in Wild-Type Human Immunodeficiency Virus Type 1. AIDS Res. Hum. Retroviruses, 14:735-740, 1998. The M184V substitution in RT yields high level resistance to 3TC and low level resistance to ddI and ddC, and alters the properties of RT. Virus containing the wt form of RT grown in the presence of the MAb 447-D develops 447-D resistance in 36 days, with the GPGR to GPGK substitutions (AGA(R) to AAA(K)). 447-D resistance took longer to acquire in virus with the M184V substituted RT, and had the form CTRPN to CTRPY (AAC(N) to TAC(Y)) at position 5 of the V3 loop. PubMed ID: 9643373. Show all entries for this paper.

Jagodzinski1996 P. P. Jagodzinski, J. Wustner, D. Kmieciak, T. J. Wasik, A. Fertala, A. L. Sieron, M. Takahashi, T. Tsuji, T. Mimura, M. S. Fung, M. K. Gorny, M. Kloczewiak, Y. Kaneko, and D. Kozbor. Role of the V2, V3, and CD4-Binding Domains of GP120 in Curdlan Sulfate Neutralization Sensitivity of HIV-1 during Infection of T Lymphocytes. Virology, 226:217-227, 1996. PubMed ID: 8955041. Show all entries for this paper.

Jiang2010 Xunqing Jiang, Valicia Burke, Maxim Totrov, Constance Williams, Timothy Cardozo, Miroslaw K. Gorny, Susan Zolla-Pazner, and Xiang-Peng Kong. Conserved Structural Elements in the V3 Crown of HIV-1 gp120. Nat. Struct. Mol. Biol., 17(8):955-961, Aug 2010. PubMed ID: 20622876. Show all entries for this paper.

Johnson2017 Jacklyn Johnson, Yinjie Zhai, Hamid Salimi, Nicole Espy, Noah Eichelberger, Orlando DeLeon, Yunxia O'Malley, Joel Courter, Amos B. Smith, III, Navid Madani, Joseph Sodroski, and Hillel Haim. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J. Virol., 91(15), 1 Aug 2017. PubMed ID: 28490588. Show all entries for this paper.

Kang2005 Sang-Moo Kang, Fu Shi Quan, Chunzi Huang, Lizheng Guo, Ling Ye, Chinglai Yang, and Richard W. Compans. Modified HIV Envelope Proteins with Enhanced Binding to Neutralizing Monoclonal Antibodies. Virology, 331(1):20-32, 5 Jan 2005. PubMed ID: 15582650. Show all entries for this paper.

Karwowska1992a S. Karwowska, M. K. Gorny, A. Buchbinder, and S. Zolla-Pazner. Type-specific human monoclonal antibodies cross-react with the V3-loop of various HIV-1 isolates. Vaccines 92, :171-174, 1992. Editors: F. Brown, H. S. Ginsberg and R. Lerner, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Show all entries for this paper.

Keele2008 Brandon F. Keele, Elena E. Giorgi, Jesus F. Salazar-Gonzalez, Julie M. Decker, Kimmy T. Pham, Maria G. Salazar, Chuanxi Sun, Truman Grayson, Shuyi Wang, Hui Li, Xiping Wei, Chunlai Jiang, Jennifer L. Kirchherr, Feng Gao, Jeffery A. Anderson, Li-Hua Ping, Ronald Swanstrom, Georgia D. Tomaras, William A. Blattner, Paul A. Goepfert, J. Michael Kilby, Michael S. Saag, Eric L. Delwart, Michael P. Busch, Myron S. Cohen, David C. Montefiori, Barton F. Haynes, Brian Gaschen, Gayathri S. Athreya, Ha Y. Lee, Natasha Wood, Cathal Seoighe, Alan S. Perelson, Tanmoy Bhattacharya, Bette T. Korber, Beatrice H. Hahn, and George M. Shaw. Identification and Characterization of Transmitted and Early Founder Virus Envelopes in Primary HIV-1 Infection. Proc. Natl. Acad. Sci. U.S.A., 105(21):7552-7557, 27 May 2008. PubMed ID: 18490657. Show all entries for this paper.

Keller1993 P. M. Keller, B. A. Arnold, A. R. Shaw, R. L. Tolman, F. Van Middlesworth, S. Bondy, V. K. Rusiecki, S. Koenig, S. Zolla-Pazner, P. Conard, E. A. Emini, and A. J. Conley. Identification of HIV Vaccine Candidate Peptides by Screening Random Phage Epitope Libraries. Virology, 193:709-716, 1993. A library of 15 mers was screened for reactivity with 447-52D. 100s of 15 mers reacted, of which 70 were sequenced. All but one contained the motif GPXR. PubMed ID: 7681612. Show all entries for this paper.

Kessler2003 Naama Kessler, Anat Zvi, Min Ji, Michal Sharon, Osnat Rosen, Rina Levy, Miroslaw Gorny, Suzan Zolla-Pazner, and Jacob Anglister. Expression, Purification, and Isotope Labeling of the Fv of the Human HIV-1 Neutralizing Antibody 447-52D for NMR Studies. Protein. Expr. Purif., 29(2):291-303, Jun 2003. PubMed ID: 12767822. Show all entries for this paper.

Kimura2009 Tetsuya Kimura, Xiao-Hong Wang, Constance Williams, Susan Zolla-Pazner, and Miroslaw K. Gorny. Human Monoclonal Antibody 2909 Binds to Pseudovirions Expressing Trimers but not Monomeric HIV-1 Envelope Proteins. Hum. Antibodies, 18(1-2):35-40, 2009. PubMed ID: 19478397. Show all entries for this paper.

Klein2013 Florian Klein, Ron Diskin, Johannes F. Scheid, Christian Gaebler, Hugo Mouquet, Ivelin S. Georgiev, Marie Pancera, Tongqing Zhou, Reha-Baris Incesu, Brooks Zhongzheng Fu, Priyanthi N. P. Gnanapragasam, Thiago Y. Oliveira, Michael S. Seaman, Peter D. Kwong, Pamela J. Bjorkman, and Michel C. Nussenzweig. Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 153(1):126-138, 28 Mar 2013. PubMed ID: 23540694. Show all entries for this paper.

Korber2009 Bette Korber and S. Gnanakaran. The Implications of Patterns in HIV Diversity for Neutralizing Antibody Induction and Susceptibility. Curr. Opin. HIV AIDS, 4(5):408-417, Sep 2009. PubMed ID: 20048705. Show all entries for this paper.

Krachmarov2005 Chavdar Krachmarov, Abraham Pinter, William J. Honnen, Miroslaw K. Gorny, Phillipe N. Nyambi, Susan Zolla-Pazner, and Samuel C. Kayman. Antibodies That Are Cross-Reactive for Human Immunodeficiency Virus Type 1 Clade A and Clade B V3 Domains Are Common in Patient Sera from Cameroon, but Their Neutralization Activity Is Usually Restricted by Epitope Masking. J. Virol., 79(2):780-790, Jan 2005. PubMed ID: 15613306. Show all entries for this paper.

Krachmarov2006 C. P. Krachmarov, W. J. Honnen, S. C. Kayman, M. K. Gorny, S. Zolla-Pazner, and Abraham Pinter. Factors Determining the Breadth and Potency of Neutralization by V3-Specific Human Monoclonal Antibodies Derived from Subjects Infected with Clade A or Clade B Strains of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):7127-7135, Jul 2006. PubMed ID: 16809318. Show all entries for this paper.

Kraft2007 Zane Kraft, Nina R. Derby, Ruth A. McCaffrey, Rachel Niec, Wendy M. Blay, Nancy L. Haigwood, Eirini Moysi, Cheryl J. Saunders, Terri Wrin, Christos J. Petropoulos, M. Juliana McElrath, and Leonidas Stamatatos. Macaques Infected with a CCR5-Tropic Simian/Human Immunodeficiency Virus (SHIV) Develop Broadly Reactive Anti-HIV Neutralizing Antibodies. J. Virol., 81(12):6402-6411, Jun 2007. PubMed ID: 17392364. Show all entries for this paper.

Kramer2007 Victor G. Kramer, Nagadenahalli B. Siddappa, and Ruth M. Ruprecht. Passive Immunization as Tool to Identify Protective HIV-1 Env Epitopes. Curr. HIV Res., 5(6):642-55, Nov 2007. PubMed ID: 18045119. Show all entries for this paper.

Kwong2009a Peter D. Kwong and Ian A. Wilson. HIV-1 and Influenza Antibodies: Seeing Antigens in New Ways. Nat. Immunol., 10(6):573-578, Jun 2009. PubMed ID: 19448659. Show all entries for this paper.

Laal1994 Suman Laal, Sherri Burda, Miroslav K. Gorny, Sylwia Karwowska, Aby Buchbinder, and Susan Zolla-Pazner. Synergistic Neutralization of Human Immunodeficiency Virus Type 1 by Combinations of Human Monoclonal Antibodies. J. Virol., 68(6):4001-4008, Jun 1994. PubMed ID: 7514683. Show all entries for this paper.

Law2007 Mansun Law, Rosa M. F. Cardoso, Ian A. Wilson, and Dennis R. Burton. Antigenic and Immunogenic Study of Membrane-Proximal External Region-Grafted gp120 Antigens by a DNA Prime-Protein Boost Immunization Strategy. J. Virol., 81(8):4272-4285, Apr 2007. PubMed ID: 17267498. Show all entries for this paper.

Lewis1995 C. M. Lewis, G. F. Hollis, G. E. Mark, 3rd, J. S. Tung, and S. W. Ludmerer. Use of a Novel Mutagenesis Strategy, Optimized Residue Substitution, to Decrease the Off-Rate of an Anti-gp120 Antibody. Mol. Immunol., 32(14-15):1065-1072, Oct 1995. PubMed ID: 8544856. Show all entries for this paper.

Li2005a Ming Li, Feng Gao, John R. Mascola, Leonidas Stamatatos, Victoria R. Polonis, Marguerite Koutsoukos, Gerald Voss, Paul Goepfert, Peter Gilbert, Kelli M. Greene, Miroslawa Bilska, Denise L Kothe, Jesus F. Salazar-Gonzalez, Xiping Wei, Julie M. Decker, Beatrice H. Hahn, and David C. Montefiori. Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J. Virol., 79(16):10108-10125, Aug 2005. PubMed ID: 16051804. Show all entries for this paper.

Li2007a Yuxing Li, Stephen A. Migueles, Brent Welcher, Krisha Svehla, Adhuna Phogat, Mark K. Louder, Xueling Wu, George M. Shaw, Mark Connors, Richard T. Wyatt, and John R. Mascola. Broad HIV-1 Neutralization Mediated by CD4-Binding Site Antibodies. Nat. Med., 13(9):1032-1034, Sep 2007. PubMed ID: 17721546. Show all entries for this paper.

Li2009c Yuxing Li, Krisha Svehla, Mark K. Louder, Diane Wycuff, Sanjay Phogat, Min Tang, Stephen A. Migueles, Xueling Wu, Adhuna Phogat, George M. Shaw, Mark Connors, James Hoxie, John R. Mascola, and Richard Wyatt. Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. J Virol, 83(2):1045-1059, Jan 2009. PubMed ID: 19004942. Show all entries for this paper.

Lin2007 George Lin and Peter L. Nara. Designing Immunogens to Elicit Broadly Neutralizing Antibodies to the HIV-1 Envelope Glycoprotein. Curr. HIV Res., 5(6):514-541, Nov 2007. PubMed ID: 18045109. Show all entries for this paper.

Ling2004 Hong Ling, Peng Xiao, Osamu Usami, and Toshio Hattori. Thrombin Activates Envelope Glycoproteins of HIV Type 1 and Enhances Fusion. Microbes Infect., 6(5):414-420, Apr 2004. PubMed ID: 15109955. Show all entries for this paper.

Louder2005 Mark K. Louder, Anna Sambor, Elena Chertova, Tai Hunte, Sarah Barrett, Fallon Ojong, Eric Sanders-Buell, Susan Zolla-Pazner, Francine E. McCutchan, James D. Roser, Dana Gabuzda, Jeffrey D. Lifson, and John R. Mascola. HIV-1 Envelope Pseudotyped Viral Vectors and Infectious Molecular Clones Expressing the Same Envelope Glycoprotein Have a Similar Neutralization Phenotype, but Culture in Peripheral Blood Mononuclear Cells Is Associated with Decreased Neutralization Sensitivity. Virology, 339(2):226-238, 1 Sep 2005. PubMed ID: 16005039. Show all entries for this paper.

Lusso2005 Paolo Lusso, Patricia L. Earl, Francesca Sironi, Fabio Santoro, Chiara Ripamonti, Gabriella Scarlatti, Renato Longhi, Edward A. Berger, and Samuele E. Burastero. Cryptic Nature of a Conserved, CD4-Inducible V3 Loop Neutralization Epitope in the Native Envelope Glycoprotein Oligomer of CCR5-Restricted, but not CXCR4-Using, Primary Human Immunodeficiency Virus Type 1 Strains. J. Virol., 79(11):6957-6968, Jun 2005. PubMed ID: 15890935. Show all entries for this paper.

Ly2000 A. Ly and L. Stamatatos. V2 Loop Glycosylation of the Human Immunodeficiency Virus Type 1 SF162 Envelope Facilitates Interaction of this Protein with CD4 and CCR5 Receptors and Protects the Virus from Neutralization by Anti-V3 Loop and Anti-CD4 Binding Site Antibodies. J. Virol., 74:6769-6776, 2000. PubMed ID: 10888615. Show all entries for this paper.

Martin2008 Grégoire Martin, Yide Sun, Bernadette Heyd, Olivier Combes, Jeffrey B Ulmer, Anne Descours, Susan W Barnett, Indresh K Srivastava, and Loïc Martin. A Simple One-Step Method for the Preparation of HIV-1 Envelope Glycoprotein Immunogens Based on a CD4 Mimic Peptide. Virology, 381(2):241-250, 25 Nov 2008. PubMed ID: 18835005. Show all entries for this paper.

Martin2011 Grégoire Martin, Brian Burke, Robert Thaï, Antu K. Dey, Olivier Combes, Bernadette Heyd, Anthony R. Geonnotti, David C. Montefiori, Elaine Kan, Ying Lian, Yide Sun, Toufik Abache, Jeffrey B. Ulmer, Hocine Madaoui, Raphaël Guérois, Susan W. Barnett, Indresh K. Srivastava, Pascal Kessler, and Loïc Martin. Stabilization of HIV-1 Envelope in the CD4-Bound Conformation through Specific Cross-Linking of a CD4 Mimetic. J. Biol. Chem., 286(24):21706-21716, 17 Jun 2011. PubMed ID: 21487012. Show all entries for this paper.

Martin-Garcia2005 Julio Martín-García, Simon Cocklin, Irwin M. Chaiken, and Francisco González-Scarano. Interaction with CD4 and Antibodies to CD4-Induced Epitopes of the Envelope gp120 from a Microglial Cell-Adapted Human Immunodeficiency Virus Type 1 Isolate. J. Virol., 79(11):6703-6713, Jun 2005. PubMed ID: 15890908. Show all entries for this paper.

McCaffrey2004 Ruth A McCaffrey, Cheryl Saunders, Mike Hensel, and Leonidas Stamatatos. N-Linked Glycosylation of the V3 Loop and the Immunologically Silent Face of gp120 Protects Human Immunodeficiency Virus Type 1 SF162 from Neutralization by Anti-gp120 and Anti-gp41 Antibodies. J. Virol., 78(7):3279-3295, Apr 2004. PubMed ID: 15016849. Show all entries for this paper.

McCann2005 C. M. Mc Cann, R. J. Song, and R. M. Ruprecht. Antibodies: Can They Protect Against HIV Infection? Curr. Drug Targets Infect. Disord., 5(2):95-111, Jun 2005. PubMed ID: 15975016. Show all entries for this paper.

McGuire2014 Andrew T. McGuire, Jolene A. Glenn, Adriana Lippy, and Leonidas Stamatatos. Diverse Recombinant HIV-1 Envs Fail to Activate B Cells Expressing the Germline B Cell Receptors of the Broadly Neutralizing Anti-HIV-1 Antibodies PG9 and 447-52D. J. Virol., 88(5):2645-2657, Mar 2014. PubMed ID: 24352455. Show all entries for this paper.

McKnight2007 Aine McKnight and Marlen M. I. Aasa-Chapman. Clade Specific Neutralising Vaccines for HIV: An Appropriate Target? Curr. HIV Res., 5(6):554-560, Nov 2007. PubMed ID: 18045111. Show all entries for this paper.

Mester2009 Brenda Mester, Revital Manor, Amit Mor, Boris Arshava, Osnat Rosen, Fa-Xiang Ding, Fred Naider, and Jacob Anglister. HIV-1 Peptide Vaccine Candidates: Selecting Constrained V3 Peptides with Highest Affinity to Antibody 447-52D. Biochemistry, 48(33):7867-7877, 25 Aug 2009. PubMed ID: 19552398. Show all entries for this paper.

Mondor1998 I. Mondor, S. Ugolini, and Q. J. Sattentau. Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is CD4 Independent and Gp120 Dependent and Requires Cell Surface Heparans. J. Virol., 72:3623-3634, 1998. PubMed ID: 9557643. Show all entries for this paper.

Moore1994d J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol., 68:5142-5155, 1994. Three seroconverting individuals were studied. The earliest detectable anti-gp120 antibodies were both conformational and anti-V3 loop, and could be detected only after the peak viremia has passed. No uniform pattern of autologous neutralizing anti-CD4BS or anti-V3 MAbs was observed. PubMed ID: 8035514. Show all entries for this paper.

Moore1995b J. P. Moore, Y. Cao, L. Qing, Q. J. Sattentau, J. Pyati, R. Koduri, J. Robinson, C. F. Barbas III, D. R. Burton, and D. D. Ho. Primary Isolates of Human Immunodeficiency Virus Type I Are Relatively Resistant to Neutralization by Monoclonal Antibodies to gp120, and Their Neutralization Is Not Predicted by Studies with Monomeric gp120. J. Virol., 69:101-109, 1995. A panel of anti-gp120 MAbs and sera from HIV-1 infected individuals was tested for its ability to neutralize primary isolates. Most MAbs bound with high affinity to gp120 monomers from the various isolates, but were not effective at neutralizing. The MAb IgG1b12, which binds to a discontinuous anti-CD4 binding site epitope, was able to neutralize most of the primary isolates. PubMed ID: 7527081. Show all entries for this paper.

Moore1995c J. P. Moore and D. D. Ho. HIV-1 Neutralization: The Consequences of Adaptation to Growth on Transformed T-Cells. AIDS, 9(suppl A):S117-S136, 1995. This review considers the relative importance of a neutralizing antibody response for the development of a vaccine, and for disease progression during the chronic phase of HIV-1 infection. It suggests that T-cell immunity may be more important. The distinction between MAbs that can neutralize primary isolates, and those that are effective at neutralizing only laboratory adapted strains is discussed in detail. Alternative conformations of envelope and non-contiguous interacting domains in gp120 are discussed. The suggestion that soluble monomeric gp120 may serve as a viral decoy that diverts the humoral immune response it in vivo is put forth. PubMed ID: 8819579. Show all entries for this paper.

Moore2006 Penny L. Moore, Emma T. Crooks, Lauren Porter, Ping Zhu, Charmagne S. Cayanan, Henry Grise, Paul Corcoran, Michael B. Zwick, Michael Franti, Lynn Morris, Kenneth H. Roux, Dennis R. Burton, and James M. Binley. Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. J. Virol., 80(5):2515-2528, Mar 2006. PubMed ID: 16474158. Show all entries for this paper.

Mor2009 Amit Mor, Eugenia Segal, Brenda Mester, Boris Arshava, Osnat Rosen, Fa-Xiang Ding, Joseph Russo, Amnon Dafni, Fabian Schvartzman, Tali Scherf, Fred Naider, and Jacob Anglister. Mimicking the Structure of the V3 Epitope Bound to HIV-1 Neutralizing Antibodies. Biochemistry, 48(15):3288-3303, 21 Apr 2009. PubMed ID: 19281264. Show all entries for this paper.

Musich2011 Thomas Musich, Paul J. Peters, Maria José Duenas-Decamp, Maria Paz Gonzalez-Perez, James Robinson, Susan Zolla-Pazner, Jonathan K. Ball, Katherine Luzuriaga, and Paul R. Clapham. A Conserved Determinant in the V1 Loop of HIV-1 Modulates the V3 Loop to Prime Low CD4 Use and Macrophage Infection. J. Virol., 85(5):2397-2405, Mar 2011. PubMed ID: 21159865. Show all entries for this paper.

Nelson2007 Josh D. Nelson, Florence M. Brunel, Richard Jensen, Emma T. Crooks, Rosa M. F. Cardoso, Meng Wang, Ann Hessell, Ian A. Wilson, James M. Binley, Philip E. Dawson, Dennis R. Burton, and Michael B. Zwick. An Affinity-Enhanced Neutralizing Antibody against the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 gp41 Recognizes an Epitope between Those of 2F5 and 4E10. J. Virol., 81(8):4033-4043, Apr 2007. PubMed ID: 17287272. Show all entries for this paper.

Nishiyama2009 Yasuhiro Nishiyama, Stephanie Planque, Yukie Mitsuda, Giovanni Nitti, Hiroaki Taguchi, Lei Jin, Jindrich Symersky, Stephane Boivin, Marcin Sienczyk, Maria Salas, Carl V. Hanson, and Sudhir Paul. Toward Effective HIV Vaccination: Induction of Binary Epitope Reactive Antibodies with Broad HIV Neutralizing Activity. J. Biol. Chem., 284(44):30627-30642, 30 Oct 2009. PubMed ID: 19726674. Show all entries for this paper.

Nyambi1998 P. N. Nyambi, M. K. Gorny, L. Bastiani, G. van der Groen, C. Williams, and S. Zolla-Pazner. Mapping of Epitopes Exposed on Intact Human Immunodeficiency Virus Type 1 (HIV-1) Virions: A New Strategy for Studying the Immunologic Relatedness of HIV-1. J. Virol., 72:9384-9391, 1998. 18 human MAbs binding to gp120 and gp41 were tested using a novel assay to test binding to intact HIV-1 virions. The new method involves using MAbs to the host proteins incorporated into virions to bind them to ELIZA plates. Antigenic conservation in epitopes of HIV-1 in clades A, B, D, F, G, and H was studied. MAbs were selected that were directed against V2, V3, CD4bd, C5 or gp41 regions. Antibodies against V2, the CD4BS, and sp41 showed weak and sporadic reactivities, while binding strongly to gp120, suggesting these epitopes are hidden when gp120 is in its native, quaternary structure. PubMed ID: 9765494. Show all entries for this paper.

Nyambi2000 P. N. Nyambi, H. A. Mbah, S. Burda, C. Williams, M. K. Gorny, A. Nadas, and S. Zolla-Pazner. Conserved and Exposed Epitopes on Intact, Native, Primary Human Immunodeficiency Virus Type 1 Virions of Group M. J. Virol., 74:7096-7107, 2000. PubMed ID: 10888650. Show all entries for this paper.

ORourke2010 Sara M. O'Rourke, Becky Schweighardt, Pham Phung, Dora P. A. J. Fonseca, Karianne Terry, Terri Wrin, Faruk Sinangil, and Phillip W. Berman. Mutation at a Single Position in the V2 Domain of the HIV-1 Envelope Protein Confers Neutralization Sensitivity to a Highly Neutralization-Resistant Virus. J. Virol., 84(21):11200-11209, Nov 2010. PubMed ID: 20702624. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.

Pantophlet2006 Ralph Pantophlet and Dennis R. Burton. GP120: Target for Neutralizing HIV-1 Antibodies. Annu. Rev. Immunol., 24:739-769, 2006. PubMed ID: 16551265. Show all entries for this paper.

Pantophlet2007 Ralph Pantophlet, Rowena O. Aguilar-Sino, Terri Wrin, Lisa A. Cavacini, and Dennis R. Burton. Analysis of the Neutralization Breadth of the Anti-V3 Antibody F425-B4e8 and Re-assessment of its Epitope Fine Specificity by Scanning Mutagenesis. Virology, 364(2):441-453, 1 Aug 2007. PubMed ID: 17418361. Show all entries for this paper.

Pantophlet2008 Ralph Pantophlet, Terri Wrin, Lisa A. Cavacini, James E. Robinson, and Dennis R. Burton. Neutralizing Activity of Antibodies to the V3 Loop Region of HIV-1 gp120 Relative to Their Epitope Fine Specificity. Virology, 381(2):251-260, 25 Nov 2008. PubMed ID: 18822440. Show all entries for this paper.

Pantophlet2010 Ralph Pantophlet. Antibody Epitope Exposure and Neutralization of HIV-1. Curr. Pharm. Des., 16(33):3729-3743, 2010. PubMed ID: 21128886. Show all entries for this paper.

Park2000 E. J. Park, M. K. Gorny, S. Zolla-Pazner, and G. V. Quinnan. A global neutralization resistance phenotype of human immunodeficiency virus type 1 is determined by distinct mechanisms mediating enhanced infectivity and conformational change of the envelope complex. J. Virol., 74:4183-91, 2000. PubMed ID: 10756031. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Patel2008 Milloni B Patel, Noah G. Hoffman, and Ronald Swanstrom. Subtype-Specific Conformational Differences within the V3 Region of Subtype B and Subtype C Human Immunodeficiency Virus Type 1 Env Proteins. J. Virol., 82(2):903-916, Jan 2008. PubMed ID: 18003735. Show all entries for this paper.

Peressin2011 M. Peressin, V. Holl, S. Schmidt, T. Decoville, D. Mirisky, A. Lederle, M. Delaporte, K. Xu, A. M. Aubertin, and C. Moog. HIV-1 Replication in Langerhans and Interstitial Dendritic Cells Is Inhibited by Neutralizing and Fc-Mediated Inhibitory Antibodies. J. Virol., 85(2):1077-1085, Jan 2011. PubMed ID: 21084491. Show all entries for this paper.

Phogat2007 S. Phogat, R. T. Wyatt, and G. B. Karlsson Hedestam. Inhibition of HIV-1 Entry by Antibodies: Potential Viral and Cellular Targets. J. Intern. Med., 262(1):26-43, Jul 2007. PubMed ID: 17598813. Show all entries for this paper.

Pinter2004 Abraham Pinter, William J. Honnen, Yuxian He, Miroslaw K. Gorny, Susan Zolla-Pazner, and Samuel C. Kayman. The V1/V2 Domain of gp120 Is a Global Regulator of the Sensitivity of Primary Human Immunodeficiency Virus Type 1 Isolates to Neutralization by Antibodies Commonly Induced upon Infection. J. Virol., 78(10):5205-5215, May 2004. PubMed ID: 15113902. Show all entries for this paper.

Pinter2005 Abraham Pinter, William J. Honnen, Paul D'Agostino, Miroslaw K. Gorny, Susan Zolla-Pazner, and Samuel C. Kayman. The C108g Epitope in the V2 Domain of gp120 Functions as a Potent Neutralization Target When Introduced into Envelope Proteins Derived from Human Immunodeficiency Virus Type 1 Primary Isolates. J. Virol., 79(11):6909-6917, Jun 2005. PubMed ID: 15890930. Show all entries for this paper.

Poignard2003 Pascal Poignard, Maxime Moulard, Edwin Golez, Veronique Vivona, Michael Franti, Sara Venturini, Meng Wang, Paul W. H. I. Parren, and Dennis R. Burton. Heterogeneity of Envelope Molecules Expressed on Primary Human Immunodeficiency Virus Type 1 Particles as Probed by the Binding of Neutralizing and Nonneutralizing Antibodies. J. Virol., 77(1):353-365, Jan 2003. PubMed ID: 12477840. Show all entries for this paper.

Pugach2004 Pavel Pugach, Shawn E. Kuhmann, Joann Taylor, Andre J. Marozsan, Amy Snyder, Thomas Ketas, Steven M. Wolinsky, Bette T. Korber, and John P. Moore. The Prolonged Culture of Human Immunodeficiency Virus Type 1 in Primary Lymphocytes Increases its Sensitivity to Neutralization by Soluble CD4. Virology, 321(1):8-22, 30 Mar 2004. PubMed ID: 15033560. Show all entries for this paper.

Pugach2008 Pavel Pugach, Thomas J. Ketas, Elizabeth Michael, and John P. Moore. Neutralizing Antibody and Anti-Retroviral Drug Sensitivities of HIV-1 Isolates Resistant to Small Molecule CCR5 Inhibitors. Virology, 377(2):401-407, 1 Aug 2008. PubMed ID: 18519143. Show all entries for this paper.

Pugach2015 Pavel Pugach, Gabriel Ozorowski, Albert Cupo, Rajesh Ringe, Anila Yasmeen, Natalia de Val, Ronald Derking, Helen J. Kim, Jacob Korzun, Michael Golabek, Kevin de Los Reyes, Thomas J. Ketas, Jean-Philippe Julien, Dennis R. Burton, Ian A. Wilson, Rogier W. Sanders, P. J. Klasse, Andrew B. Ward, and John P. Moore. A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene. J. Virol., 89(6):3380-3395, Mar 2015. PubMed ID: 25589637. Show all entries for this paper.

Ringe2011 Rajesh Ringe, Deepak Sharma, Susan Zolla-Pazner, Sanjay Phogat, Arun Risbud, Madhuri Thakar, Ramesh Paranjape, and Jayanta Bhattacharya. A Single Amino Acid Substitution in the C4 Region in gp120 Confers Enhanced Neutralization of HIV-1 by Modulating CD4 Binding Sites and V3 Loop. Virology, 418(2):123-132, 30 Sep 2011. PubMed ID: 21851958. Show all entries for this paper.

Robinson2010 James E. Robinson, Kelly Franco, Debra Holton Elliott, Mary Jane Maher, Ashley Reyna, David C. Montefiori, Susan Zolla-Pazner, Miroslaw K. Gorny, Zane Kraft, and Leonidas Stamatatos. Quaternary Epitope Specificities of Anti-HIV-1 Neutralizing Antibodies Generated in Rhesus Macaques Infected by the Simian/Human Immunodeficiency Virus SHIVSF162P4. J. Virol., 84(7):3443-3453, Apr 2010. PubMed ID: 20106929. Show all entries for this paper.

Rosen2005 Osnat Rosen, Jordan Chill, Michal Sharon, Naama Kessler, Brenda Mester, Susan Zolla-Pazner, and Jacob Anglister. Induced Fit in HIV-Neutralizing Antibody Complexes: Evidence for Alternative Conformations of the gp120 V3 Loop and the Molecular Basis for Broad Neutralization. Biochemistry, 44(19):7250-7158, 17 May 2005. PubMed ID: 15882063. Show all entries for this paper.

Ruprecht2011 Claudia R. Ruprecht, Anders Krarup, Lucy Reynell, Axel M. Mann, Oliver F. Brandenberg, Livia Berlinger, Irene A. Abela, Roland R. Regoes, Huldrych F. Günthard, Peter Rusert, and Alexandra Trkola. MPER-Specific Antibodies Induce gp120 Shedding and Irreversibly Neutralize HIV-1. J. Exp. Med., 208(3):439-454, 14 Mar 2011. PubMed ID: 21357743. Show all entries for this paper.

Saarloos1995 M. N. Saarloos, T. F. Lint, and G. T. Spear. Efficacy of HIV-Specific and `Antibody-Independent' Mechanisms for Complement Activation by HIV-Infected Cells. Clin. Exp. Immunol., 99:189-195, 1995. PubMed ID: 7851010. Show all entries for this paper.

Sabin2010 Charles Sabin, Davide Corti, Victor Buzon, Mike S. Seaman, David Lutje Hulsik, Andreas Hinz, Fabrizia Vanzetta, Gloria Agatic, Chiara Silacci, Lara Mainetti, Gabriella Scarlatti, Federica Sallusto, Robin Weiss, Antonio Lanzavecchia, and Winfried Weissenhorn. Crystal Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of gp41. PLoS Pathog., 6(11):e1001195, 2010. PubMed ID: 21124990. Show all entries for this paper.

Sanders2013 Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931. Show all entries for this paper.

Sattentau1995 Q. J. Sattentau, S. Zolla-Pazner, and P. Poignard. Epitope Exposure on Functional, Oligomeric HIV-1 gp41 Molecules. Virology, 206:713-717, 1995. Most gp41 epitopes are masked when associated with gp120 on the cell surface. Weak binding of anti-gp41 MAbs can be enhanced by treatment with sCD4. MAb 2F5 binds to a membrane proximal epitope which binds in the presence of gp120 without sCD4. PubMed ID: 7530400. Show all entries for this paper.

Sattentau1995b Q. J. Sattentau. Conservation of HIV-1 gp120 Neutralizing Epitopes after Formalin Inactivation. AIDS, 9:1383-1385, 1995. PubMed ID: 8605064. Show all entries for this paper.

Sattentau1996 Q. J. Sattentau. Neutralization of HIV-1 by Antibody. Curr. Opin. Immunol., 8:540-545, 1996. Review. PubMed ID: 8794008. Show all entries for this paper.

Scheid2009 Johannes F. Scheid, Hugo Mouquet, Niklas Feldhahn, Michael S. Seaman, Klara Velinzon, John Pietzsch, Rene G. Ott, Robert M. Anthony, Henry Zebroski, Arlene Hurley, Adhuna Phogat, Bimal Chakrabarti, Yuxing Li, Mark Connors, Florencia Pereyra, Bruce D. Walker, Hedda Wardemann, David Ho, Richard T. Wyatt, John R. Mascola, Jeffrey V. Ravetch, and Michel C. Nussenzweig. Broad Diversity of Neutralizing Antibodies Isolated from Memory B Cells in HIV-Infected Individuals. Nature, 458(7238):636-640, 2 Apr 2009. PubMed ID: 19287373. Show all entries for this paper.

Seaman2010 Michael S. Seaman, Holly Janes, Natalie Hawkins, Lauren E. Grandpre, Colleen Devoy, Ayush Giri, Rory T. Coffey, Linda Harris, Blake Wood, Marcus G. Daniels, Tanmoy Bhattacharya, Alan Lapedes, Victoria R Polonis, Francine E. McCutchan, Peter B. Gilbert, Steve G. Self, Bette T. Korber, David C. Montefiori, and John R. Mascola. Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. J Virol, 84(3):1439-1452, Feb 2010. PubMed ID: 19939925. Show all entries for this paper.

Selvarajah2005 Suganya Selvarajah, Bridget Puffer, Ralph Pantophlet, Mansun Law, Robert W. Doms, and Dennis R. Burton. Comparing Antigenicity and Immunogenicity of Engineered gp120. J. Virol., 79(19):12148-12163, Oct 2005. PubMed ID: 16160142. Show all entries for this paper.

Sharon2002 Michal Sharon, Matthias Görlach, Rina Levy, Yehezkiel Hayek, and Jacob Anglister. Expression, Purification, and Isotope Labeling of a gp120 V3 Peptide and Production of a Fab from a HIV-1 Neutralizing Antibody for NMR Studies. Protein Expr. Purif., 24(3):374-383, Apr 2002. PubMed ID: 11922753. Show all entries for this paper.

Sharpe2004 Simon Sharpe, Naama Kessler, Jacob A. Anglister, Wai-Ming Yau, and Robert Tycko. Solid-State NMR Yields Structural Constraints on the V3 Loop from HIV-1 Gp120 Bound to the 447-52D Antibody Fv Fragment. J. Am. Chem. Soc., 126(15):4979-4990, 21 Apr 2004. PubMed ID: 15080704. Show all entries for this paper.

Shen2010 Xiaoying Shen, S. Moses Dennison, Pinghuang Liu, Feng Gao, Frederick Jaeger, David C. Montefiori, Laurent Verkoczy, Barton F. Haynes, S. Munir Alam, and Georgia D. Tomaras. Prolonged Exposure of the HIV-1 gp41 Membrane Proximal Region with L669S Substitution. Proc. Natl. Acad. Sci. U.S.A., 107(13):5972-5977, 30 Mar 2010. PubMed ID: 20231447. Show all entries for this paper.

Sheppard2007a Neil C. Sheppard, Sarah L. Davies, Simon A. Jeffs, Sueli M. Vieira, and Quentin J. Sattentau. Production and Characterization of High-Affinity Human Monoclonal Antibodies to Human Immunodeficiency Virus Type 1 Envelope Glycoproteins in a Mouse Model Expressing Human Immunoglobulins. Clin. Vaccine Immunol., 14(2):157-167, Feb 2007. PubMed ID: 17167037. Show all entries for this paper.

Shibata2007 Junji Shibata, Kazuhisa Yoshimura, Akiko Honda, Atsushi Koito, Toshio Murakami, and Shuzo Matsushita. Impact of V2 Mutations on Escape from a Potent Neutralizing Anti-V3 Monoclonal Antibody during In Vitro Selection of a Primary Human Immunodeficiency Virus Type 1 Isolate. J. Virol., 81(8):3757-3768, Apr 2007. PubMed ID: 17251298. Show all entries for this paper.

Shmelkov2011 Evgeny Shmelkov, Arthur Nadas, James Swetnam, Susan Zolla-Pazner, and Timothy Cardozo. Indirect Detection of an Epitope-Specific Response to HIV-1 gp120 Immunization in Human Subjects. PLoS One, 6(11):e27279, 2011. PubMed ID: 22076145. Show all entries for this paper.

Shmelkov2014 Evgeny Shmelkov, Chavdar Krachmarov, Arsen V. Grigoryan, Abraham Pinter, Alexander Statnikov, and Timothy Cardozo. Computational Prediction of Neutralization Epitopes Targeted by Human Anti-V3 HIV Monoclonal Antibodies. PLoS One, 9(2):e89987, 2014. PubMed ID: 24587168. Show all entries for this paper.

Sirois2007 Suzanne Sirois, Mohamed Touaibia, Kuo-Chen Chou, and Rene Roy. Glycosylation of HIV-1 gp120 V3 Loop: Towards the Rational Design of a Synthetic Carbohydrate Vaccine. Curr. Med. Chem., 14(30):3232-3242, 2007. PubMed ID: 18220757. Show all entries for this paper.

Smalls-Mantey2012 Adjoa Smalls-Mantey, Nicole Doria-Rose, Rachel Klein, Andy Patamawenu, Stephen A. Migueles, Sung-Youl Ko, Claire W. Hallahan, Hing Wong, Bai Liu, Lijing You, Johannes Scheid, John C. Kappes, Christina Ochsenbauer, Gary J. Nabel, John R. Mascola, and Mark Connors. Antibody-Dependent Cellular Cytotoxicity against Primary HIV-Infected CD4+ T Cells Is Directly Associated with the Magnitude of Surface IgG Binding. J. Virol., 86(16):8672-8680, Aug 2012. PubMed ID: 22674985. Show all entries for this paper.

Smith1998 A. D. Smith, S. C. Geisler, A. A. Chen, D. A. Resnick, B. M. Roy, P. J. Lewi, E. Arnold, and G. F. Arnold. Human Rhinovirus Type 14: Human Immunodeficiency Virus Type 1 (HIV-1) V3 Loop Chimeras from a Combinatorial Library Induce Potent Neutralizing Antibody Responses against HIV-1. J. Virol., 72:651-659, 1998. The tip of the MN V3 loop, IGPGRAFYTTKN, was inserted into cold-causing human rhinovirus 14 (HRV14) and chimeras were immunoselected using MAbs 447-52-D, 694/98-D, NM-01, and 59.1, for good presentation of the V3 antigenic region. The selected chimeric viruses were neutralized by anti-V3 loop MAbs. The chimeric viruses elicited potent NAbs against ALA-1 and MN in guinea pigs. PubMed ID: 9420270. Show all entries for this paper.

Spear1993 G. T. Spear, D. M. Takefman, B. L. Sullivan, A. L. Landay, and S. Zolla-Pazner. Complement activation by human monoclonal antibodies to human immunodeficiency virus. J. Virol., 67:53-59, 1993. This study looked at the ability of 16 human MAbs to activate complement. MAbs directed against the V3 region could induce C3 deposition on infected cells and virolysis of free virus, but antibodies to the CD4BS and C-terminal region and two regions in gp41 could induce no complement mediated effects. Pre-treatment with sCD4 could increase complement-mediated effects of anti-gp41 MAbs, but decreased the complement-mediated effects of V3 MAbs. Anti-gp41 MAbs were able to affect IIIB but not MN virolysis, suggesting spontaneous shedding of gp120 on IIIB virions exposes gp41 epitopes. IgG isotype did not appear to have an effect on virolysis or C3 deposition. PubMed ID: 7677959. Show all entries for this paper.

Sreepian2009 Apichai Sreepian, Jongruk Permmongkol, Wannee Kantakamalakul, Sontana Siritantikorn, Nattaya Tanlieng, and Ruengpung Sutthent. HIV-1 Neutralization by Monoclonal Antibody against Conserved Region 2 and Patterns of Epitope Exposure on the Surface of Native Viruses. J. Immune Based Ther. Vaccines, 7:5, 2009. PubMed ID: 19821992. Show all entries for this paper.

Srivastava2002 Indresh K. Srivastava, Leonidas Stamatatos, Harold Legg, Elaine Kan, Anne Fong, Stephen R. Coates, Louisa Leung, Mark Wininger, John J. Donnelly, Jeffrey B. Ulmer, and Susan W. Barnett. Purification and Characterization of Oligomeric Envelope Glycoprotein from a Primary R5 Subtype B Human Immunodeficiency Virus. J. Virol., 76(6):2835-2847, Mar 2002. URL: http://jvi.asm.org/cgi/content/full/76/6/2835. PubMed ID: 11861851. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Srivastava2008 Indresh K. Srivastava, Elaine Kan, Yide Sun, Victoria A. Sharma, Jimna Cisto, Brian Burke, Ying Lian, Susan Hilt, Zohar Biron, Karin Hartog, Leonidas Stamatatos, Ruben Diaz-Avalos, R Holland Cheng, Jeffrey B. Ulmer, and Susan W. Barnett. Comparative Evaluation of Trimeric Envelope Glycoproteins Derived from Subtype C and B HIV-1 R5 Isolates. Virology, 372(2):273-290, 15 Mar 2008. PubMed ID: 18061231. Show all entries for this paper.

Stanfield2005 Robyn L. Stanfield and Ian A. Wilson. Structural Studies of Human HIV-1 V3 Antibodies. Hum Antibodies, 14(3-4):73-80, 2005. PubMed ID: 16720977. Show all entries for this paper.

Stanfield2006 Robyn L. Stanfield, Miroslaw K. Gorny, Susan Zolla-Pazner, and Ian A. Wilson. Crystal Structures of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralizing Antibody 2219 in Complex with Three Different V3 Peptides Reveal a New Binding Mode for HIV-1 Cross-Reactivity. J. Virol., 80(12):6093-6105, Jun 2006. PubMed ID: 16731948. Show all entries for this paper.

Swetnam2010 James Swetnam, Evgeny Shmelkov, Susan Zolla-Pazner, and Timothy Cardozo. Comparative Magnitude of Cross-Strain Conservation of HIV Variable Loop Neutralization Epitopes. PLoS One, 5(12):e15994, 2010. PubMed ID: 21209919. Show all entries for this paper.

Tasca2008 Silvana Tasca, Siu-Hong Ho, and Cecilia Cheng-Mayer. R5X4 Viruses Are Evolutionary, Functional, and Antigenic Intermediates in the Pathway of a Simian-Human Immunodeficiency Virus Coreceptor Switch. J. Virol., 82(14):7089-7099, Jul 2008. PubMed ID: 18480460. Show all entries for this paper.

Teeraputon2005 Sirilak Teeraputon, Suda Louisirirojchanakul, and Prasert Auewarakul. N-Linked Glycosylation in C2 Region of HIV-1 Envelope Reduces Sensitivity to Neutralizing Antibodies. Viral Immunol., 18(2):343-353, Summer 2005. PubMed ID: 16035946. Show all entries for this paper.

Tomaras2011 Georgia D. Tomaras, James M. Binley, Elin S. Gray, Emma T. Crooks, Keiko Osawa, Penny L. Moore, Nancy Tumba, Tommy Tong, Xiaoying Shen, Nicole L. Yates, Julie Decker, Constantinos Kurt Wibmer, Feng Gao, S. Munir Alam, Philippa Easterbrook, Salim Abdool Karim, Gift Kamanga, John A. Crump, Myron Cohen, George M. Shaw, John R. Mascola, Barton F. Haynes, David C. Montefiori, and Lynn Morris. Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals. J. Virol., 85(21):11502-11519, Nov 2011. PubMed ID: 21849452. Show all entries for this paper.

Totrov2010 Maxim Totrov, Xunqing Jiang, Xiang-Peng Kong, Sandra Cohen, Chavdar Krachmarov, Aidy Salomon, Constance Williams, Michael S. Seaman, Ruben Abagyan, Timothy Cardozo, Miroslaw K. Gorny, Shixia Wang, Shan Lu, Abraham Pinter, and Susan Zolla-Pazner. Structure-Guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold. Virology, 405(2):513-523, 30 Sep 2010. PubMed ID: 20663531. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Ugolini1997 S. Ugolini, I. Mondor, P. W. H. I Parren, D. R. Burton, S. A. Tilley, P. J. Klasse, and Q. J. Sattentau. Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line-Adapted HIV-1 Neutralization. J. Exp. Med., 186:1287-1298, 1997. PubMed ID: 9334368. Show all entries for this paper.

Upadhyay2014 Chitra Upadhyay, Luzia M. Mayr, Jing Zhang, Rajnish Kumar, Miroslaw K. Gorny, Arthur Nádas, Susan Zolla-Pazner, and Catarina E. Hioe. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope. J. Virol., 88(21):12853-12865, Nov 2014. PubMed ID: 25165106. Show all entries for this paper.

Vaine2010 Michael Vaine, Shixia Wang, Qin Liu, James Arthos, David Montefiori, Paul Goepfert, M. Juliana McElrath, and Shan Lu. Profiles of Human Serum Antibody Responses Elicited by Three Leading HIV Vaccines Focusing on the Induction of Env-Specific Antibodies. PLoS One, 5(11):e13916, 2010. PubMed ID: 21085486. Show all entries for this paper.

VanCott1994 T. C. VanCott, F. R. Bethke, V. R. Polonis, M. K. Gorny, S. Zolla-Pazner, R. R. Redfield, and D. L. Birx. Dissociation Rate of Antibody-gp120 Binding Interactions Is Predictive of V3-Mediated Neutralization of HIV-1. J. Immunol., 153:449-459, 1994. Using surface plasmon resonance it was found that the rate of the dissociation of the MAb-gp120 complex, but not the association rate, correlated with MAbs ability to neutralize homologous virus (measured by 50\% inhibition of p24 production). Association constants were similar for all MAbs tested, varying less than 4-fold. Dissociation rate constants were quite variable, with 100-fold differences observed. PubMed ID: 7515931. Show all entries for this paper.

vanGils2011 Marit J. van Gils, Evelien M. Bunnik, Brigitte D. Boeser-Nunnink, Judith A. Burger, Marijke Terlouw-Klein, Naomi Verwer, and Hanneke Schuitemaker. Longer V1V2 Region with Increased Number of Potential N-Linked Glycosylation Sites in the HIV-1 Envelope Glycoprotein Protects against HIV-Specific Neutralizing Antibodies. J. Virol., 85(14):6986-6995, Jul 2011. PubMed ID: 21593147. Show all entries for this paper.

Varadarajan2005 Raghavan Varadarajan, Deepak Sharma, Kausik Chakraborty, Mayuri Patel, Michael Citron, Prem Sinha, Ramkishor Yadav, Umar Rashid, Sarah Kennedy, Debra Eckert, Romas Geleziunas, David Bramhill, William Schleif, Xiaoping Liang, and John Shiver. Characterization of gp120 and Its Single-Chain Derivatives, gp120-CD4D12 and gp120-M9: Implications for Targeting the CD4i Epitope in Human Immunodeficiency Virus Vaccine Design. J. Virol., 79(3):1713-1723, Feb 2005. PubMed ID: 15650196. Show all entries for this paper.

Vermeire2009 Kurt Vermeire, Kristel Van Laethem, Wouter Janssens, Thomas W. Bell, and Dominique Schols. Human Immunodeficiency Virus Type 1 Escape from Cyclotriazadisulfonamide-Induced CD4-Targeted Entry Inhibition Is Associated with Increased Neutralizing Antibody Susceptibility. J. Virol., 83(18):9577-9583, Sep 2009. PubMed ID: 19570853. Show all entries for this paper.

Verrier2001 F. Verrier, A. Nadas, M. K. Gorny, and S. Zolla-Pazner. Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. J. Virol., 75(19):9177--86, Oct 2001. URL: http://jvi.asm.org/cgi/content/full/75/19/9177. PubMed ID: 11533181. Show all entries for this paper.

Visciano2008 Maria Luisa Visciano, Michael Tuen, Miroslaw K. Gorny, and Catarina E. Hioe. In Vivo Alteration of Humoral Responses to HIV-1 Envelope Glycoprotein gp120 by Antibodies to the CD4-Binding Site of gp120. Virology, 372(2):409-420, 15 Mar 2008. PubMed ID: 18054978. Show all entries for this paper.

Wang2007a Bao-Zhong Wang, Weimin Liu, Sang-Moo Kang, Munir Alam, Chunzi Huang, Ling Ye, Yuliang Sun, Yingying Li, Denise L. Kothe, Peter Pushko, Terje Dokland, Barton F. Haynes, Gale Smith, Beatrice H. Hahn, and Richard W. Compans. Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles. J. Virol., 81(20):10869-10878, Oct 2007. PubMed ID: 17670815. Show all entries for this paper.

Wu2008 Xueling Wu, Anna Sambor, Martha C. Nason, Zhi-Yong Yang, Lan Wu, Susan Zolla-Pazner, Gary J. Nabel, and John R. Mascola. Soluble CD4 Broadens Neutralization of V3-Directed Monoclonal Antibodies and Guinea Pig Vaccine Sera against HIV-1 Subtype B and C Reference Viruses. Virology, 380(2):285-295, 25 Oct 2008. PubMed ID: 18804254. Show all entries for this paper.

Wu2010 Xueling Wu, Zhi-Yong Yang, Yuxing Li, Carl-Magnus Hogerkorp, William R. Schief, Michael S. Seaman, Tongqing Zhou, Stephen D. Schmidt, Lan Wu, Ling Xu, Nancy S. Longo, Krisha McKee, Sijy O'Dell, Mark K. Louder, Diane L. Wycuff, Yu Feng, Martha Nason, Nicole Doria-Rose, Mark Connors, Peter D. Kwong, Mario Roederer, Richard T. Wyatt, Gary J. Nabel, and John R. Mascola. Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 329(5993):856-861, 13 Aug 2010. PubMed ID: 20616233. Show all entries for this paper.

Xu2010 Hengyu Xu, Likai Song, Mikyung Kim, Margaret A. Holmes, Zane Kraft, George Sellhorn, Ellis L. Reinherz, Leonidas Stamatatos, and Roland K. Strong. Interactions between Lipids and Human Anti-HIV Antibody 4E10 Can Be Reduced without Ablating Neutralizing Activity. J. Virol., 84(2):1076-1088, Jan 2010. PubMed ID: 19906921. Show all entries for this paper.

Yamamoto2008 Hiroyuki Yamamoto and Tetsuro Matano. Anti-HIV Adaptive Immunity: Determinants for Viral Persistence. Rev. Med. Virol., 18(5):293-303, Sep-Oct 2008. PubMed ID: 18416450. Show all entries for this paper.

Yang2010a Qiang Yang, Cishan Li, Yadong Wei, Wei Huang, and Lai-Xi Wang. Expression, Glycoform Characterization, and Antibody-Binding of HIV-1 V3 Glycopeptide Domain Fused with Human IgG1-Fc. Bioconjug. Chem., 21(5):875-883, 19 May 2010. PubMed ID: 20369886. Show all entries for this paper.

Yates2018 Nicole L. Yates, Allan C. deCamp, Bette T. Korber, Hua-Xin Liao, Carmela Irene, Abraham Pinter, James Peacock, Linda J. Harris, Sheetal Sawant, Peter Hraber, Xiaoying Shen, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayapan, Phillip W. Berman, Merlin L. Robb, Giuseppe Pantaleo, Susan Zolla-Pazner, Barton F. Haynes, S. Munir Alam, David C. Montefiori, and Georgia D. Tomaras. HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. J. Virol., 92(8), 15 Apr 2018. PubMed ID: 29386288. Show all entries for this paper.

York2001 J. York, K. E. Follis, M. Trahey, P. N. Nyambi, S. Zolla-Pazner, and J. H. Nunberg. Antibody binding and neutralization of primary and T-cell line-adapted isolates of human immunodeficiency virus type 1. J. Virol., 75(6):2741--52, Mar 2001. URL: http://jvi.asm.org/cgi/content/full/75/6/2741. PubMed ID: 11222697. Show all entries for this paper.

Yoshimura2006 Kazuhisa Yoshimura, Junji Shibata, Tetsuya Kimura, Akiko Honda, Yosuke Maeda, Atsushi Koito, Toshio Murakami, Hiroaki Mitsuya, and Shuzo Matsushita. Resistance Profile of a Neutralizing Anti-HIV Monoclonal Antibody, KD-247, that Shows Favourable Synergism with Anti-CCR5 Inhibitors. AIDS, 20(16):2065-2073, 24 Oct 2006. PubMed ID: 17053352. Show all entries for this paper.

Yu2010 Bin Yu, Dora P. A. J. Fonseca, Sara M. O'Rourke, and Phillip W. Berman. Protease Cleavage Sites in HIV-1 gp120 Recognized by Antigen Processing Enzymes Are Conserved and Located at Receptor Binding Sites. J. Virol., 84(3):1513-1526, Feb 2010. PubMed ID: 19939935. Show all entries for this paper.

Yu2018 Wen-Han Yu, Peng Zhao, Monia Draghi, Claudia Arevalo, Christina B. Karsten, Todd J. Suscovich, Bronwyn Gunn, Hendrik Streeck, Abraham L. Brass, Michael Tiemeyer, Michael Seaman, John R. Mascola, Lance Wells, Douglas A. Lauffenburger, and Galit Alter. Exploiting Glycan Topography for Computational Design of Env Glycoprotein Antigenicity. PLoS Comput. Biol., 14(4):e1006093, Apr 2018. PubMed ID: 29677181. Show all entries for this paper.

Yuste2006 Eloisa Yuste, Hannah B. Sanford, Jill Carmody, Jacqueline Bixby, Susan Little, Michael B. Zwick, Tom Greenough, Dennis R. Burton, Douglas D. Richman, Ronald C. Desrosiers, and Welkin E. Johnson. Simian Immunodeficiency Virus Engrafted with Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Epitopes: Replication, Neutralization, and Survey of HIV-1-Positive Plasma. J. Virol., 80(6):3030-3041, Mar 2006. PubMed ID: 16501112. Show all entries for this paper.

Zhou2010 Tongqing Zhou, Ivelin Georgiev, Xueling Wu, Zhi-Yong Yang, Kaifan Dai, Andrés Finzi, Young Do Kwon, Johannes F. Scheid, Wei Shi, Ling Xu, Yongping Yang, Jiang Zhu, Michel C. Nussenzweig, Joseph Sodroski, Lawrence Shapiro, Gary J. Nabel, John R. Mascola, and Peter D. Kwong. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 329(5993):811-817, 13 Aug 2010. PubMed ID: 20616231. Show all entries for this paper.

Zolla-Pazner1995 S. Zolla-Pazner, J. O'Leary, S. Burda, M. K. Gorny, M. Kim, J. Mascola, and F. McCutchan. Serotyping of primary human immunodeficiency virus type 1 isolates from diverse geographic locations by flow cytometry. J. Virol., 69:3807-3815, 1995. A set of 13 human MAbs to a variety of epitopes were tested against a panel of primary isolates of HIV-1, representing different genetic clades. The V3 loop tended to be B clade restricted, and a single gp120 C-terminus binding antibody was clade specific. Two other gp120 C-terminus binding antibodies were group specific. PubMed ID: 7745728. Show all entries for this paper.

Zolla-Pazner1995a S. Zolla-Pazner and S. Sharpe. A Resting Cell Assay for Improved Detection of Antibody-Mediated Neutralization of HIV Type 1 Primary Isolates. AIDS Res. Hum. Retroviruses, 11:1449-1458, 1995. PubMed ID: 8679288. Show all entries for this paper.

Zolla-Pazner1999a S. Zolla-Pazner, M. K. Gorny, P. N. Nyambi, T. C. VanCott, and A. Nadas. Immunotyping of Human Immunodeficiency Virus Type 1 (HIV): An Approach to Immunologic Classification of HIV. J. Virol., 73:4042-4051, 1999. 21 human anti-V3 MAbs were studied with respect to cross-clade reactivity and immunological relationship to other human anti-V3 MAbs. Broad cross-reactivities were observed, and V3 peptides were grouped into immunotypes that contained peptides from several clades. PubMed ID: 10196300. Show all entries for this paper.

Zolla-Pazner1999b S. Zolla-Pazner, M. K. Gorny, and P. N. Nyambi. The implications of antigenic diversity for vaccine development. Immunol. Lett., 66:159-64, 1999. PubMed ID: 10203049. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 539

Download this epitope record as JSON.

MAb ID G3-42 (G3 42)
HXB2 Location gp160(429-438)
DNA(7509..7538)
gp160 Epitope Map
Author Location gp120(429-438 BRU)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY, NY
Epitope EVGKAMYAPP Epitope Alignment
EVGKAMYAPP epitope logo
Ab Type gp120 C4
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody interactions, binding affinity, co-receptor, neutralization, novel epitope

Vaccine Details

Vaccine type virus derived protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 12 of 12 notes.

References

Showing 13 of 13 references.

Isolation Paper
Sun1989 N. C. Sun, D. D. Ho, C. R. Y. Sun, R.-S. Liou, W. Gordon, M. S. C. Fung, X. L. Li, R. C. Ting, T.-H. Lee, N. T. Chang, and T. W. Chang. Generation and Characterization of Monoclonal Antibodies to the Putative CD4-Binding Domain of Human Immunodeficiency Virus Type 1 gp120. J. Virol., 63:3579-3585, 1989. PubMed ID: 2474670. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley2000 J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724. Show all entries for this paper.

Jagodzinski1996 P. P. Jagodzinski, J. Wustner, D. Kmieciak, T. J. Wasik, A. Fertala, A. L. Sieron, M. Takahashi, T. Tsuji, T. Mimura, M. S. Fung, M. K. Gorny, M. Kloczewiak, Y. Kaneko, and D. Kozbor. Role of the V2, V3, and CD4-Binding Domains of GP120 in Curdlan Sulfate Neutralization Sensitivity of HIV-1 during Infection of T Lymphocytes. Virology, 226:217-227, 1996. PubMed ID: 8955041. Show all entries for this paper.

Jagodzinski2000 P. P. Jagodzinski and W. H. Trzeciak. Application of monoclonal antibodies to monitor the synthesis of a glycoprotein core of envelope glycoproteins of human immunodeficiency virus (HIV-1). Biomed. Pharmacother., 54:50-3, 2000. PubMed ID: 10721463. Show all entries for this paper.

Koefoed2005 Klaus Koefoed, Lauge Farnaes, Meng Wang, Arne Svejgaard, Dennis R. Burton, and Henrik J. Ditzel. Molecular Characterization of the Circulating Anti-HIV-1 gp120-Specific B Cell Repertoire using Antibody Phage Display Libraries Generated from Pre-Selected HIV-1 gp120 Binding PBLs. J. Immunol. Methods, 297(1-2):187-201, Feb 2005. PubMed ID: 15777942. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 540

Download this epitope record as JSON.

MAb ID G3-299
HXB2 Location gp160(429-438)
DNA(7509..7538)
gp160 Epitope Map
Author Location gp120(429-438 BRU)
Research Contact M. Fung and Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope EVGKAMYAPP Epitope Alignment
EVGKAMYAPP epitope logo
Ab Type gp120 C4
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody interactions

Vaccine Details

Vaccine type virus derived protein
Vaccine component gp120

Notes

Showing 9 of 9 notes.

References

Showing 11 of 11 references.

Isolation Paper
Sun1989 N. C. Sun, D. D. Ho, C. R. Y. Sun, R.-S. Liou, W. Gordon, M. S. C. Fung, X. L. Li, R. C. Ting, T.-H. Lee, N. T. Chang, and T. W. Chang. Generation and Characterization of Monoclonal Antibodies to the Putative CD4-Binding Domain of Human Immunodeficiency Virus Type 1 gp120. J. Virol., 63:3579-3585, 1989. PubMed ID: 2474670. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Ditzel1997 H. J. Ditzel, P. W. Parren, J. M. Binley, J. Sodroski, J. P. Moore, C. F. Barbas, III, and D. R. Burton. Mapping the Protein Surface of Human Immunodeficiency Virus Type 1 gp120 Using Human Monoclonal Antibodies from Phage Display Libraries. J. Mol. Biol., 267:684-695, 1997. (Genbank: U82767 U82768 U82769 U82770 U82771 U82772 U82942 U82943 U82944 U82945 U82946 U82947 U82948 U82949 U82950 U82951 U82952 U82961 U82962) Recombinant monoclonal antibodies from phage display libraries provide a method for Env surface epitope mapping. Diverse epitopes are accessed by presenting gp120 to the library in different forms, such as sequential masking of epitopes with existing MAbs or sCD4 prior to selection or by selection on peptides. Fabs identified by these methods have specificities associated with epitopes presented poorly on native multimeric envelope. PubMed ID: 9126846. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Kwong2002 Peter D. Kwong, Michael L. Doyle, David J. Casper, Claudia Cicala, Stephanie A. Leavitt, Shahzad Majeed, Tavis D. Steenbeke, Miro Venturi, Irwin Chaiken, Michael Fung, Hermann Katinger, Paul W. I. H. Parren, James Robinson, Donald Van Ryk, Liping Wang, Dennis R. Burton, Ernesto Freire, Richard Wyatt, Joseph Sodroski, Wayne A. Hendrickson, and James Arthos. HIV-1 Evades Antibody-Mediated Neutralization through Conformational Masking of Receptor-Binding Sites. Nature, 420(6916):678-682, 12 Dec 2002. Comment in Nature. 2002 Dec 12;420(6916):623-4. PubMed ID: 12478295. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 541

Download this epitope record as JSON.

MAb ID G3-508 (G3 508)
HXB2 Location gp160(429-438)
DNA(7509..7538)
gp160 Epitope Map
Author Location gp120(429-438 BRU)
Research Contact M. Fung and Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope EVGKAMYAPP Epitope Alignment
EVGKAMYAPP epitope logo
Ab Type gp120 C4
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords  

Vaccine Details

Vaccine type virus derived protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 9 of 9 notes.

References

Showing 10 of 10 references.

Isolation Paper
Sun1989 N. C. Sun, D. D. Ho, C. R. Y. Sun, R.-S. Liou, W. Gordon, M. S. C. Fung, X. L. Li, R. C. Ting, T.-H. Lee, N. T. Chang, and T. W. Chang. Generation and Characterization of Monoclonal Antibodies to the Putative CD4-Binding Domain of Human Immunodeficiency Virus Type 1 gp120. J. Virol., 63:3579-3585, 1989. PubMed ID: 2474670. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.


Displaying record number 542

Download this epitope record as JSON.

MAb ID G3-519
HXB2 Location gp160(429-438)
DNA(7509..7538)
gp160 Epitope Map
Author Location gp120(429-438 BRU)
Research Contact Tanox Biosystems Inc and David Ho, ADARC, NY
Epitope EVGKAMYAPP Epitope Alignment
EVGKAMYAPP epitope logo
Ab Type gp120 C4
Neutralizing L
Species (Isotype) mouse(IgG1)
Patient  
Immunogen vaccine
Keywords antibody interactions

Vaccine Details

Vaccine type virus derived protein
Vaccine strain B clade IIIB
Vaccine component gp120

Notes

Showing 11 of 11 notes.

References

Showing 12 of 12 references.

Isolation Paper
Sun1989 N. C. Sun, D. D. Ho, C. R. Y. Sun, R.-S. Liou, W. Gordon, M. S. C. Fung, X. L. Li, R. C. Ting, T.-H. Lee, N. T. Chang, and T. W. Chang. Generation and Characterization of Monoclonal Antibodies to the Putative CD4-Binding Domain of Human Immunodeficiency Virus Type 1 gp120. J. Virol., 63:3579-3585, 1989. PubMed ID: 2474670. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1993c J. P. Moore, M. Thali, B. A. Jameson, F. Vignaux, G. K. Lewis, S.-W. Poon, M. S. Fung, P. J. Durda, L. Akerblom, B. Wahren, D. D. Ho, Q. J. Sattentau, and J. Sodroski. Immunochemical Analysis of the gp120 Surface Glycoprotein of Human Immunodeficiency Virus Type 1: Probing the Structure of the C4 and V4 Domains and the Interaction of the C4 Domain with the V3 Loop. J. Virol., 73:4785-4796, 1993. General observations: C4 and V3 MAbs are sensitive to the way the epitopes are presented, and this sensitivity cannot be correlated to peptide binding. Some V3-C4 domain interaction was indicated based on mutation and interference studies. PubMed ID: 7687303. Show all entries for this paper.

DSouza1994 M. P. D'Souza, S. J. Geyer, C. V. Hanson, R. M. Hendry, G. Milman, and Collaborating Investigators. Evaluation of Monoclonal Antibodies to HIV-1 Envelope by Neutralization and Binding Assays: An International Collaboration. AIDS, 8:169-181, 1994. PubMed ID: 7519019. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Binley2000 J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.


Displaying record number 581

Download this epitope record as JSON.

MAb ID 110.1 (110-1)
HXB2 Location gp160(491-500)
DNA(7695..7724)
gp160 Epitope Map
Author Location gp120(491-500 LAI)
Research Contact Genetic Systems Corp, Seattle WA, E. Kinney-Thomas
Epitope IEPLGVAPTK Epitope Alignment
IEPLGVAPTK epitope logo
Subtype B
Ab Type gp120 C5
Neutralizing  
Species (Isotype) mouse(IgG1κ)
Patient  
Immunogen vaccine
Keywords antibody binding site, antibody generation, immunotoxin

Vaccine Details

Vaccine type HIV infected-cell lysate
Vaccine strain B clade BRU
Vaccine component HIV-1

Notes

Showing 11 of 11 notes.

References

Showing 12 of 12 references.

Isolation Paper
Gosting1987 L. H. Gosting, J. McClure, E. S. Dickinson, S. M. Watanabe, K. Shriver, and L. C. Goldstein. Monoclonal antibodies to gp110 and gp41 of human immunodeficiency virus. J. Clin. Microbiol., 25:845-848, 1987. PubMed ID: 2438302. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Callahan1991 Lawrence N. Callahan, Michael Phelan, Margherita Mallinson, and Michael A. Norcross. Dextran Sulfate Blocks Antibody Binding to the Principal Neutralizing Domain of Human Immunodeficiency Virus Type 1 without Interfering with gp120-CD4 Interactions. J. Virol., 65(3):1543-1550, Mar 1991. PubMed ID: 1995952. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Kanduc2008 Darja Kanduc, Rosario Serpico, Alberta Lucchese, and Yehuda Shoenfeld. Correlating Low-Similarity Peptide Sequences and HIV B-Cell Epitopes. Autoimmun. Rev., 7(4):291-296, Feb 2008. PubMed ID: 18295732. Show all entries for this paper.

Linsley1988 P. S. Linsley, J. A. Ledbetter, E. Kinney-Thomas, and S.-L. Hu. Effects of Anti-gp120 Monoclonal Antibodies on CD4 Receptor Binding by the env Protein of Human Immunodeficiency Virus Type 1. J. Virol., 62:3695-3702, 1988. PubMed ID: 2458487. Show all entries for this paper.

Maksiutov2002 A. Z. Maksiutov, A. G. Bachinskii, and S. I. Bazhan. [Searching for Local Similarities Between HIV-1 and Human Proteins. Application to Vaccines]. Mol Biol (Mosk), 36(3):447-459, May-Jun 2002. Article in Russian. PubMed ID: 12068630. Show all entries for this paper.

McDougal1996 J. S. McDougal, M. S. Kennedy, S. L. Orloff, J. K. A. Nicholson, and T. J. Spira. Mechanisms of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralization: Irreversible Inactivation of Infectivity by Anti-HIV-1 Antibody. J. Virol., 70:5236-5245, 1996. Studies of polyclonal sera autologous virus inactivation indicates that in individuals over time, viral populations emerge that are resistant to inactivating effects of earlier sera. PubMed ID: 8764033. Show all entries for this paper.

Moore1994a J. P. Moore, Q. J. Sattentau, R. Wyatt, and J. Sodroski. Probing the Structure of the Human Immunodeficiency Virus Surface Glycoprotein gp120 with a Panel of Monoclonal Antibodies. J. Virol., 68:469-484, 1994. This study compared a large number of MAbs that bind to linear epitopes of gp120, and compared binding affinities for: i) native and SDS-DDT denatured gp120, (clone BH10 of the LAI isolate expressed in CHO cells); ii) recombinant gp120 lacking the V1, V2, V3 loops; iii) a panel of 20 mer peptides; iv) a panel of gp120 mutants; and v) oligomeric versus monomeric gp120. The binding ratio of native versus denatured monomeric gp120 is included in the table in this database. These numbers should be considered with the following points in mind: a continuous epitope may be partially exposed on the surface; and a preparation of rgp120 is not homogeneous and contains fully folded, partly denatured, and some completely unfolded species, so the conformation of what is considered to be a native protein will not only reflect fully folded gp120. The authors suggest that a fivefold increase in the affinity for a MAb binding to denatured versus native gp120 indicates that the epitope is inaccessible in the native form. We also have included here information extracted from Moore et al's list of the gp120 mutations that reduced the binding of a particular MAb. In mapping of exposed regions of gp120, C2, C3, and C5 domain epitopes were found to bind preferentially to denatured gp120. V1, V2 and V3, part of C4, and the extreme carboxy terminus of C5 were exposed on the native monomer. In the oligomeric form of the molecule, only V2, V3 and part of C4 are well exposed as continuous epitopes. PubMed ID: 7504741. Show all entries for this paper.

Pincus1991 S. H. Pincus, R. L. Cole, E. M. Hersh, D. Lake, Y. Masuho, P. J. Durda, and J. McClure. In Vitro Efficacy of Anti-HIV Immunotoxins Targeted by Various Antibodies to the Envelope Protein. J. Immunol., 146:4315-4324, 1991. Six MAbs, (907, 924, 110.1, 41.1, 86 and P5-3) and polyclonal pooled serum antibodies purified on gp160 were coupled to RAC to create immunotoxins. Only 41.1-RAC, an anti-gp41 MAb-immunotoxin and the polyclonal immunotoxin showed direct activity against multiple strains, and activity of an immunotoxin was found not to be directly correlated with cell surface binding. PubMed ID: 1710247. Show all entries for this paper.

Thomas1988 E. Kinney Thomas, J. N. Weber, J. McClure, P. R. Clapham, M. C. Singhal, M. K. Shriver, and R. A. Weiss. Neutralizing Monoclonal Antibodies to the AIDS Virus. AIDS, 2:25-29, 1988. PubMed ID: 2451922. Show all entries for this paper.

Valenzuela1998 A. Valenzuela, J. Blanco, B. Krust, R. Franco, and A. G. Hovanessian. Neutralizing Antibodies against the V3 Loop of Human Immunodeficiency Type 1 gp120 Block the CD4-Dependent and Independent Binding of the Virus to Cells. J. Virol., 71:8289-8298, 1998. PubMed ID: 9343181. Show all entries for this paper.


Displaying record number 627

Download this epitope record as JSON.

MAb ID 15e (1.5e, 1.5E, 15E, N70-1.5e)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, LA, and David Ho, ADARC, NY, NY
Epitope (Discontinuous epitope)
Ab Type gp120 CD4BS
Neutralizing View neutralization details
Species (Isotype) human(IgG1κ)
Patient N70
Immunogen HIV-1 infection
Keywords ADCC, adjuvant comparison, antibody binding site, antibody generation, antibody interactions, antibody sequence, assay or method development, binding affinity, brain/CSF, co-receptor, enhancing activity, glycosylation, HAART, ART, kinetics, neutralization, review, structure, subtype comparisons, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity

Notes

Showing 86 of 86 notes.

References

Showing 88 of 88 references.

Isolation Paper
Robinson1990c J. E. Robinson, D. Holton, S. Pacheco-Morell, J. Liu, and H. McMurdo. Identification of Conserved and Variable Epitopes of Human Immunodeficiency Virus Type-1 (HIV-1) gp120 by Human Monoclonal Antibodies Produced by EBV Transformed Cell Lines. AIDS Res. Hum. Retroviruses, 6:567-579, 1990. PubMed ID: 1694449. Show all entries for this paper.

Bagley1994 J. Bagley, P. J. Dillon, C. Rosen, J. Robinson, J. Sodroski, and W. A. Marasco. Structural Characterization of Broadly Neutralizing Human Monoclonal Antibodies Against the CD4 Binding Site of HIV-1 gp120. Mol. Immunol., 31(15):1149-1160, 1994. This paper is a detailed study of the V-D-J heavy chain usage and V-J light chain usage for the three monoclonals that bind to the HIV-1 envelope CD4 binding site: F105, 15e and 21h. Different germline genes were used, and there was evidence for antigen-drive clonal selection of somatic mutations. Eight positions in the heavy chain and two in the light chain complementarity determining positions were identical in the three Mabs. PubMed ID: 7935503. Show all entries for this paper.

Banerjee2009 Kaustuv Banerjee, Sofija Andjelic, Per Johan Klasse, Yun Kang, Rogier W. Sanders, Elizabeth Michael, Robert J. Durso, Thomas J. Ketas, William C. Olson, and John P. Moore. Enzymatic Removal of Mannose Moieties Can Increase the Immune Response to HIV-1 gp120 In Vivo. Virology, 389(1-2):108-121, 20 Jun 2009. PubMed ID: 19410272. Show all entries for this paper.

Berman1997 P. W. Berman, A. M. Gray, T. Wrin, J. C. Vennari, D. J. Eastman, G. R. Nakamura, D. P. Francis, G. Gorse, and D. H. Schwartz. Genetic and Immunologic Characterization of Viruses Infecting MN-rgp120-Vaccinated Volunteers. J. Infect. Dis., 176:384-397, 1997. PubMed ID: 9237703. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Binley2010 James M Binley, Yih-En Andrew Ban, Emma T. Crooks, Dirk Eggink, Keiko Osawa, William R. Schief, and Rogier W. Sanders. Role of Complex Carbohydrates in Human Immunodeficiency Virus Type 1 Infection and Resistance to Antibody Neutralization. J. Virol., 84(11):5637-5655, Jun 2010. PubMed ID: 20335257. Show all entries for this paper.

Bontjer2010 Ilja Bontjer, Mark Melchers, Dirk Eggink, Kathryn David, John P. Moore, Ben Berkhout, and Rogier W. Sanders. Stabilized HIV-1 Envelope Glycoprotein Trimers Lacking the V1V2 Domain, Obtained by Virus Evolution. J. Biol. Chem, 285(47):36456-36470, 19 Nov 2010. PubMed ID: 20826824. Show all entries for this paper.

Chen2009 Lei Chen, Young Do Kwon, Tongqing Zhou, Xueling Wu, Sijy O'Dell, Lisa Cavacini, Ann J. Hessell, Marie Pancera, Min Tang, Ling Xu, Zhi-Yong Yang, Mei-Yun Zhang, James Arthos, Dennis R. Burton, Dimiter S. Dimitrov, Gary J. Nabel, Marshall R. Posner, Joseph Sodroski, Richard Wyatt, John R. Mascola, and Peter D. Kwong. Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 326(5956):1123-1127, 20 Nov 2009. PubMed ID: 19965434. Show all entries for this paper.

Cook1994 D. G. Cook, J. Fantini, S. L. Spitalnik, and F. Gonzalez-Scarano. Binding of Human Immunodeficiency Virus Type 1 HIV-1 gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virol., 201:206-214, 1994. Antibodies against GalCer can block infection of CD4-negative cells from the brain and colon that are susceptible to HIV infection. This paper explores the ability of a panel of MAbs to inhibit binding of gp120 to GalCer, and also of the binding of GalCer to inhibit MAb-gp120 interaction. MAbs to the V3 loop and GalCer showed mutual inhibition of binding to gp120, and anti-CD4 binding site MAbs showed reduced inhibition. N- and C-terminal MAbs didn't influence GalCer binding. PubMed ID: 8184533. Show all entries for this paper.

Cordell1991 J. Cordell, J. P. Moore, C. J. Dean, P. J. Klasse, R. A. Weiss, and J. A. McKeating. Rat Monoclonal Antibodies to Nonoverlapping Epitopes of Human Immunodeficiency Virus Type I gp120 Block CD4 Binding In Vitro. Virology, 185:72-79, 1991. PubMed ID: 1718090. Show all entries for this paper.

Crooks2005 Emma T. Crooks, Penny L. Moore, Douglas Richman, James Robinson, Jeffrey A. Crooks, Michael Franti, Norbert Schülke, and James M. Binley. Characterizing Anti-HIV Monoclonal Antibodies and Immune Sera by Defining the Mechanism of Neutralization. Hum Antibodies, 14(3-4):101-113, 2005. PubMed ID: 16720980. Show all entries for this paper.

Crooks2007 Emma T. Crooks, Penny L. Moore, Michael Franti, Charmagne S. Cayanan, Ping Zhu, Pengfei Jiang, Robbert P. de Vries, Cheryl Wiley, Irina Zharkikh, Norbert Schülke, Kenneth H. Roux, David C. Montefiori, Dennis R. Burton, and James M. Binley. A Comparative Immunogenicity Study of HIV-1 Virus-Like Particles Bearing Various Forms of Envelope Proteins, Particles Bearing no Envelope and Soluble Monomeric gp120. Virology, 366(2):245-262, 30 Sep 2007. PubMed ID: 17580087. Show all entries for this paper.

Crooks2015 Ema T. Crooks, Tommy Tong, Bimal Chakrabarti, Kristin Narayan, Ivelin S. Georgiev, Sergey Menis, Xiaoxing Huang, Daniel Kulp, Keiko Osawa, Janelle Muranaka, Guillaume Stewart-Jones, Joanne Destefano, Sijy O'Dell, Celia LaBranche, James E. Robinson, David C. Montefiori, Krisha McKee, Sean X. Du, Nicole Doria-Rose, Peter D. Kwong, John R. Mascola, Ping Zhu, William R. Schief, Richard T. Wyatt, Robert G. Whalen, and James M. Binley. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog, 11(5):e1004932, May 2015. PubMed ID: 26023780. Show all entries for this paper.

Derby2006 Nina R. Derby, Zane Kraft, Elaine Kan, Emma T. Crooks, Susan W. Barnett, Indresh K. Srivastava, James M. Binley, and Leonidas Stamatatos. Antibody Responses Elicited in Macaques Immunized with Human Immunodeficiency Virus Type 1 (HIV-1) SF162-Derived gp140 Envelope Immunogens: Comparison with Those Elicited during Homologous Simian/Human Immunodeficiency Virus SHIVSF162P4 and Heterologous HIV-1 Infection. J. Virol., 80(17):8745-8762, Sep 2006. PubMed ID: 16912322. Show all entries for this paper.

Dey2008 Antu K. Dey, Kathryn B. David, Neelanjana Ray, Thomas J. Ketas, Per J. Klasse, Robert W. Doms, and John P. Moore. N-Terminal Substitutions in HIV-1 gp41 Reduce the Expression of Non-Trimeric Envelope Glycoproteins on the Virus. Virology, 372(1):187-200, 1 Mar 2008. PubMed ID: 18031785. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Fouts1998 T. R. Fouts, A. Trkola, M. S. Fung, and J. P. Moore. Interactions of Polyclonal and Monoclonal Anti-Glycoprotein 120 Antibodies with Oligomeric Glycoprotein 120-Glycoprotein 41 Complexes of a Primary HIV Type 1 Isolate: Relationship to Neutralization. AIDS Res. Hum. Retroviruses, 14:591-597, 1998. Ab reactivity to oligomeric forms of gp120 were compared to neutralization of the macrophage tropic primary virus JRFL, and did not always correlate. This builds upon studies which have shown that oligomer binding while required for neutralization, is not always sufficient. MAb 205-46-9 and 2G6 bind oligomer with high affinity, comparable to IgG1b12, but unlike IgG1b12, cannot neutralize JRFL. Furthermore, neutralizing and non-neutralizing sera from HIV-1 infected people are similar in their reactivities to oligomeric JRFL Envelope. PubMed ID: 9591713. Show all entries for this paper.

Frey2008 Gary Frey, Hanqin Peng, Sophia Rits-Volloch, Marco Morelli, Yifan Cheng, and Bing Chen. A Fusion-Intermediate State of HIV-1 gp41 Targeted by Broadly Neutralizing Antibodies. Proc. Natl. Acad. Sci. U.S.A., 105(10):3739-3744, 11 Mar 2008. PubMed ID: 18322015. Show all entries for this paper.

Gach2013 Johannes S. Gach, Heribert Quendler, Tommy Tong, Kristin M. Narayan, Sean X. Du, Robert G. Whalen, James M. Binley, Donald N. Forthal, Pascal Poignard, and Michael B. Zwick. A Human Antibody to the CD4 Binding Site of gp120 Capable of Highly Potent but Sporadic Cross Clade Neutralization of Primary HIV-1. PLoS One, 8(8):e72054, 2013. PubMed ID: 23991039. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Gorny2009 Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.

Ho1992 D. D. Ho, M. S. C. Fung, H. Yoshiyama, Y. Cao, and J. E. Robinson. Discontinuous Epitopes on gp120 Important in HIV-1 Neutralization. AIDS Res. Hum. Retroviruses, 8:1337-1339, 1992. Further description of the human MAb 15e and the murine MAb G3-4. gp120 mutants that affect 15e epitope binding: 113, 257, 368, 370, 421, 427, 475; four of these coincide with amino acids important for the CD4 binding domain. G3-4 is neutralizing and behaves like a discontinuous epitope, and partially blocks sCD4 binding. PubMed ID: 1281654. Show all entries for this paper.

Kang2009 Yun Kenneth Kang, Sofija Andjelic, James M. Binley, Emma T. Crooks, Michael Franti, Sai Prasad N. Iyer, Gerald P. Donovan, Antu K. Dey, Ping Zhu, Kenneth H. Roux, Robert J. Durso, Thomas F. Parsons, Paul J. Maddon, John P. Moore, and William C. Olson. Structural and Immunogenicity Studies of a Cleaved, Stabilized Envelope Trimer Derived from Subtype A HIV-1. Vaccine, 27(37):5120-5132, 13 Aug 2009. PubMed ID: 19567243. Show all entries for this paper.

Kolchinsky2001 P. Kolchinsky, E. Kiprilov, P. Bartley, R. Rubinstein, and J. Sodroski. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J. Virol., 75(7):3435--43, Apr 2001. URL: http://jvi.asm.org/cgi/content/full/75/7/3435. PubMed ID: 11238869. Show all entries for this paper.

Koup1991 R. A. Koup, J. E. Robinson, Q. V. Nguyen, C. A. Pikora, B. Blais, A. Roskey, D. Panicali, and J. L. Sullivan. Antibody-Dependent Cell-Mediated Cytotoxicity Directed by a Human Monoclonal Antibody Reactive with gp120 of HIV-1. AIDS, 5:1309-1314, 1991. PubMed ID: 1722676. Show all entries for this paper.

Kramer2007 Victor G. Kramer, Nagadenahalli B. Siddappa, and Ruth M. Ruprecht. Passive Immunization as Tool to Identify Protective HIV-1 Env Epitopes. Curr. HIV Res., 5(6):642-55, Nov 2007. PubMed ID: 18045119. Show all entries for this paper.

Kwong2002 Peter D. Kwong, Michael L. Doyle, David J. Casper, Claudia Cicala, Stephanie A. Leavitt, Shahzad Majeed, Tavis D. Steenbeke, Miro Venturi, Irwin Chaiken, Michael Fung, Hermann Katinger, Paul W. I. H. Parren, James Robinson, Donald Van Ryk, Liping Wang, Dennis R. Burton, Ernesto Freire, Richard Wyatt, Joseph Sodroski, Wayne A. Hendrickson, and James Arthos. HIV-1 Evades Antibody-Mediated Neutralization through Conformational Masking of Receptor-Binding Sites. Nature, 420(6916):678-682, 12 Dec 2002. Comment in Nature. 2002 Dec 12;420(6916):623-4. PubMed ID: 12478295. Show all entries for this paper.

Lai2012 Rachel P. J. Lai, Michael S. Seaman, Paul Tonks, Frank Wegmann, David J. Seilly, Simon D. W. Frost, Celia C. LaBranche, David C. Montefiori, Antu K. Dey, Indresh K. Srivastava, Quentin Sattentau, Susan W. Barnett, and Jonathan L. Heeney. Mixed Adjuvant Formulations Reveal a New Combination That Elicit Antibody Response Comparable to Freund's Adjuvants. PLoS One, 7(4):e35083, 2012. PubMed ID: 22509385. Show all entries for this paper.

Leaman2010 Daniel P. Leaman, Heather Kinkead, and Michael B. Zwick. In-Solution Virus Capture Assay Helps Deconstruct Heterogeneous Antibody Recognition of Human Immunodeficiency Virus Type 1. J. Virol., 84(7):3382-3395, Apr 2010. PubMed ID: 20089658. Show all entries for this paper.

Lee1995 C.-N. Lee, J. Robinson, G. Mazzara, Y.-L. Cheng, M. Essex, and T.-H. Lee. Contribution of hypervariable domains to the conformation of a broadly neutralizing glycoprotein 120 epitope. AIDS Res. Hum. Retroviruses, 11:777-781, 1995. Deletion of the V4 or V5 domains, in contrast to the V1, V2 and V3 domains of gp120, affect the broadly neutralizing epitope recognized by 1.5e by disturbing the overall conformation of the envelope protein. PubMed ID: 7546903. Show all entries for this paper.

Li1997 A. Li, T. W. Baba, J. Sodroski, S. Zolla-Pazner, M. K. Gorny, J. Robinson, M. R. Posner, H. Katinger, C. F. Barbas III, D. R. Burton, T.-C. Chou, and R. M Ruprecht. Synergistic Neutralization of a Chimeric SIV/HIV Type 1 Virus with Combinations of Human Anti-HIV Type 1 Envelope Monoclonal Antibodies or Hyperimmune Globulins. AIDS Res. Hum. Retroviruses, 13:647-656, 1997. Multiple combinations of MAbs were tested for their ability to synergize neutralization of a SHIV construct containing HIV IIIB env. All of the MAb combinations tried were synergistic, suggesting such combinations may be useful for passive immunotherapy or immunoprophylaxis. Because SHIV can replicate in rhesus macaques, such approaches can potentially be studied in an it in vivo monkey model. PubMed ID: 9168233. Show all entries for this paper.

Lin2007 George Lin and Peter L. Nara. Designing Immunogens to Elicit Broadly Neutralizing Antibodies to the HIV-1 Envelope Glycoprotein. Curr. HIV Res., 5(6):514-541, Nov 2007. PubMed ID: 18045109. Show all entries for this paper.

Magnus2010 Carsten Magnus and Roland R. Regoes. Estimating the Stoichiometry of HIV Neutralization. PLoS Comput. Biol., 6(3):e1000713, Mar 2010. PubMed ID: 20333245. Show all entries for this paper.

McCann2005 C. M. Mc Cann, R. J. Song, and R. M. Ruprecht. Antibodies: Can They Protect Against HIV Infection? Curr. Drug Targets Infect. Disord., 5(2):95-111, Jun 2005. PubMed ID: 15975016. Show all entries for this paper.

McDougal1996 J. S. McDougal, M. S. Kennedy, S. L. Orloff, J. K. A. Nicholson, and T. J. Spira. Mechanisms of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralization: Irreversible Inactivation of Infectivity by Anti-HIV-1 Antibody. J. Virol., 70:5236-5245, 1996. Studies of polyclonal sera autologous virus inactivation indicates that in individuals over time, viral populations emerge that are resistant to inactivating effects of earlier sera. PubMed ID: 8764033. Show all entries for this paper.

McKeating1996b J. A. McKeating, Y. J. Zhang, C. Arnold, R. Frederiksson, E. M. Fenyo, and P. Balfe. Chimeric viruses expressing primary envelope glycoproteins of human immunodeficiency virus type I show increased sensitivity to neutralization by human sera. Virology, 220:450-460, 1996. Chimeric viruses for HXB2 with primary isolate gp120 gave patterns of cell tropism and cytopathicity identical to the original primary viruses. Sera that were unable to neutralize the primary isolates were in some cases able to neutralize chimeric viruses, indicating that some of the neutralizing epitopes were in gp41. PubMed ID: 8661395. Show all entries for this paper.

Melchers2012 Mark Melchers, Ilja Bontjer, Tommy Tong, Nancy P. Y. Chung, Per Johan Klasse, Dirk Eggink, David C. Montefiori, Maurizio Gentile, Andrea Cerutti, William C. Olson, Ben Berkhout, James M. Binley, John P. Moore, and Rogier W. Sanders. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses. J. Virol., 86(5):2488-2500, Mar 2012. PubMed ID: 22205734. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Moore1994d J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol., 68:5142-5155, 1994. Three seroconverting individuals were studied. The earliest detectable anti-gp120 antibodies were both conformational and anti-V3 loop, and could be detected only after the peak viremia has passed. No uniform pattern of autologous neutralizing anti-CD4BS or anti-V3 MAbs was observed. PubMed ID: 8035514. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Nabatov2004 Alexey A. Nabatov, Georgios Pollakis, Thomas Linnemann, Aletta Kliphius, Moustapha I. M. Chalaby, and William A. Paxton. Intrapatient Alterations in the Human Immunodeficiency Virus Type 1 gp120 V1V2 and V3 Regions Differentially Modulate Coreceptor Usage, Virus Inhibition by CC/CXC Chemokines, Soluble CD4, and the b12 and 2G12 Monoclonal Antibodies. J. Virol., 78(1):524-530, Jan 2004. PubMed ID: 14671134. Show all entries for this paper.

Pancera2010a Marie Pancera, Shahzad Majeed, Yih-En Andrew Ban, Lei Chen, Chih-chin Huang, Leopold Kong, Young Do Kwon, Jonathan Stuckey, Tongqing Zhou, James E. Robinson, William R. Schief, Joseph Sodroski, Richard Wyatt, and Peter D. Kwong. Structure of HIV-1 gp120 with gp41-Interactive Region Reveals Layered Envelope Architecture and Basis of Conformational Mobility. Proc. Natl. Acad. Sci. U.S.A., 107(3):1166-1171, 19 Jan 2010. PubMed ID: 20080564. Show all entries for this paper.

Pantophlet2003 Ralph Pantophlet, Erica Ollmann Saphire, Pascal Poignard, Paul W. H. I. Parren, Ian A. Wilson, and Dennis R. Burton. Fine Mapping of the Interaction of Neutralizing and Nonneutralizing Monoclonal Antibodies with the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120. J. Virol., 77(1):642-658, Jan 2003. PubMed ID: 12477867. Show all entries for this paper.

Pantophlet2003b Ralph Pantophlet, Ian A. Wilson, and Dennis R. Burton. Hyperglycosylated Mutants of Human Immunodeficiency Virus (HIV) Type 1 Monomeric gp120 as Novel Antigens for HIV Vaccine Design. J. Virol., 77(10):5889-8901, May 2003. PubMed ID: 12719582. Show all entries for this paper.

Pantophlet2004 R. Pantophlet, I. A. Wilson, and D. R. Burton. Improved Design of an Antigen with Enhanced Specificity for the Broadly HIV-Neutralizing Antibody b12. Protein Eng. Des. Sel., 17(10):749-758, Oct 2004. PubMed ID: 15542540. Show all entries for this paper.

Park2000 E. J. Park, M. K. Gorny, S. Zolla-Pazner, and G. V. Quinnan. A global neutralization resistance phenotype of human immunodeficiency virus type 1 is determined by distinct mechanisms mediating enhanced infectivity and conformational change of the envelope complex. J. Virol., 74:4183-91, 2000. PubMed ID: 10756031. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Pollara2013 Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Marzena Pazgier, Barton F. Haynes, and Guido Ferrari. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity (ADCC) Responses. Curr. HIV Res., 11(5):378-387, Jul 2013. PubMed ID: 24191939. Show all entries for this paper.

Raja2003 Aarti Raja, Miro Venturi, Peter Kwong, and Joseph Sodroski. CD4 Binding Site Antibodies Inhibit Human Immunodeficiency Virus gp120 Envelope Glycoprotein Interaction with CCR5. J. Virol., 77(1):713-718, Jan 2003. PubMed ID: 12477875. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.

Robinson2005 James E. Robinson, Debra Holton Elliott, Effie A. Martin, Kathryne Micken, and Eric S. Rosenberg. High Frequencies of Antibody Responses to CD4 Induced Epitopes in HIV Infected Patients Started on HAART during Acute Infection. Hum Antibodies, 14(3-4):115-121, 2005. PubMed ID: 16720981. Show all entries for this paper.

Sanders2013 Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Seaman2010 Michael S. Seaman, Holly Janes, Natalie Hawkins, Lauren E. Grandpre, Colleen Devoy, Ayush Giri, Rory T. Coffey, Linda Harris, Blake Wood, Marcus G. Daniels, Tanmoy Bhattacharya, Alan Lapedes, Victoria R Polonis, Francine E. McCutchan, Peter B. Gilbert, Steve G. Self, Bette T. Korber, David C. Montefiori, and John R. Mascola. Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. J Virol, 84(3):1439-1452, Feb 2010. PubMed ID: 19939925. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Sullivan1998 N. Sullivan, Y. Sun, Q. Sattentau, M. Thali, D. Wu, G. Denisova, J. Gershoni, J. Robinson, J. Moore, and J. Sodroski. CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. J. Virol., 72:4694-4703, 1998. A study of the sCD4 inducible MAb 17bi, and the MAb CG10 that recognizes a gp120-CD4 complex. These epitopes are minimally accessible upon attachment of gp120 to the cell. The CD4-binding induced changes in gp120 were studied, exploring the sequestering of chemokine receptor binding sites from the humoral response. PubMed ID: 9573233. Show all entries for this paper.

Sullivan1998b N. Sullivan, Y. Sun, J. Binley, J. Lee, C. F. Barbas III, P. W. H. I. Parren, D. R. Burton, and J. Sodroski. Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J. Virol., 72:6332-8, 1998. PubMed ID: 9658072. Show all entries for this paper.

Sundling2012 Christopher Sundling, Yuxing Li, Nick Huynh, Christian Poulsen, Richard Wilson, Sijy O'Dell, Yu Feng, John R. Mascola, Richard T. Wyatt, and Gunilla B. Karlsson Hedestam. High-Resolution Definition of Vaccine-Elicited B Cell Responses Against the HIV Primary Receptor Binding Site. Sci. Transl. Med., 4(142):142ra96, 11 Jul 2012. PubMed ID: 22786681. Show all entries for this paper.

Takeda1992 A. Takeda, J. E. Robinson, D. D. Ho, C. Debouck, N. L. Haigwood, and F. A. Ennis. Distinction of human immunodeficiency virus type 1 neutralization and infection enhancement by human monoclonal antibodies to glycoprotein 120. J Clin Inv, 89:1952-1957, 1992. Complement receptors for IgG on monocytic cells can serve as a means for MAb mediated enhancement of HIV-1 infection. MAbs N70-1.5 and N70-2.3a bind distinct discontinuous epitopes in gp120. N70-1.5 is a potent neutralizing MAb with no enhancing activity, while N70-2.3a doesn't neutralize and mediates enhancement of HIV-1 infection. PubMed ID: 1376330. Show all entries for this paper.

Thali1991 M. Thali, U. Olshevsky, C. Furman, D. Gabuzda, M. Posner, and J. Sodroski. Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody. J. Virol., 65(11):6188-6193, 1991. An early detailed characterization of the mutations that inhibit the neutralization capacity of the MAb F105, that binds to a discontinuous epitope and inhibits CD4 binding to gp120. PubMed ID: 1717717. Show all entries for this paper.

Thali1992a M. Thali, C. Furman, D. D. Ho, J. Robinson, S. Tilley, A. Pinter, and J. Sodroski. Discontinuous, Conserved Neutralization Epitopes Overlapping the CD4-Binding Region of Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 66:5635-5641, 1992. Maps the relationship between amino acid substitutions that reduce CD4-gp120 interaction, and amino acid substitutions that reduce the binding of discontinuous epitope MAbs that inhibit CD4 binding. PubMed ID: 1380099. Show all entries for this paper.

Thali1993 M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski. Characterization of Conserved Human Immunodeficiency Virus Type 1 gp120 Neutralization Epitopes Exposed upon gp120-CD4 Binding. J. Virol., 67:3978-3988, 1993. Five regions are likely to contribute to the 48d and 17b discontinuous epitopes, either directly or through local conformational effects: the hydrophobic ring-like structure formed by the disulfide bond that links C3 and C4, the base of the stem-loop that contains V1 and V2, and the hydrophobic region in C2 from Arg 252 to Asp 262. Additionally changes in Glu 370, and Met 475 in C5, affected binding and neutralization. The hydrophobic character of these critical regions is consistent with the limited exposure on gp120 prior to CD4 binding. PubMed ID: 7685405. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Tong2012 Tommy Tong, Ema T. Crooks, Keiko Osawa, and James M. Binley. HIV-1 Virus-Like Particles Bearing Pure Env Trimers Expose Neutralizing Epitopes but Occlude Nonneutralizing Epitopes. J. Virol., 86(7):3574-3587, Apr 2012. PubMed ID: 22301141. Show all entries for this paper.

Trkola1996b A. Trkola, T. Dragic, J. Arthos, J. M. Binley, W. C. Olson, G. P. Allaway, C. Cheng-Mayer, J. Robinson, P. J. Maddon, and J. P. Moore. CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and Its Co-Receptor CCR-5. Nature, 384:184-187, 1996. CCR-5 is a co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. CD4 binding greatly increases the efficiency of gp120-CCR-5 interaction. Neutralizing MAbs against the V3 loop and CD4-induced epitopes on gp120 inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. PubMed ID: 8906796. Show all entries for this paper.

Trkola1998 A. Trkola, T. Ketas, V. N. Kewalramani, F. Endorf, J. M. Binley, H. Katinger, J. Robinson, D. R. Littman, and J. P. Moore. Neutralization Sensitivity of Human Immunodeficiency Virus Type 1 Primary Isolates to Antibodies and CD4-Based Reagents Is Independent of Coreceptor Usage. J. Virol., 72:1876-1885, 1998. PubMed ID: 9499039. Show all entries for this paper.

Vaine2008 Michael Vaine, Shixia Wang, Emma T. Crooks, Pengfei Jiang, David C. Montefiori, James Binley, and Shan Lu. Improved Induction of Antibodies against Key Neutralizing Epitopes by Human Immunodeficiency Virus Type 1 gp120 DNA Prime-Protein Boost Vaccination Compared to gp120 Protein-Only Vaccination. J. Virol., 82(15):7369-7378, Aug 2008. PubMed ID: 18495775. Show all entries for this paper.

Walker2010 Laura M. Walker, Melissa D. Simek, Frances Priddy, Johannes S. Gach, Denise Wagner, Michael B. Zwick, Sanjay K. Phogat, Pascal Poignard, and Dennis R. Burton. A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals. PLoS Pathog., 6(8), 2010. PubMed ID: 20700449. Show all entries for this paper.

Watkins1993 B. A. Watkins, M. S. Reitz, Jr., C. A. Wilson, K. Aldrich, A. E. Davis, and M. Robert-Guroff. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways. J. Virol., 67:7493-7500, 1993. A neutralization resistance point mutation (HXB2 A281V) was studied using a variety of MAbs, and it was shown that this substitution affects a different epitope than a previously characterized neutralization escape mutant (A582T) (Reitz 1988, Wilson 1990). PubMed ID: 7693973. Show all entries for this paper.

Wisnewski1996 A. Wisnewski, L. Cavacini, and M. Posner. Human antibody variable region gene usage in HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 11:31-38, 1996. PubMed ID: 8528730. Show all entries for this paper.

Wu2009a Lan Wu, Tongqing Zhou, Zhi-yong Yang, Krisha Svehla, Sijy O'Dell, Mark K. Louder, Ling Xu, John R. Mascola, Dennis R. Burton, James A. Hoxie, Robert W. Doms, Peter D. Kwong, and Gary J. Nabel. Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. J. Virol., 83(10):5077-5086, May 2009. PubMed ID: 19264769. Show all entries for this paper.

Wu2010 Xueling Wu, Zhi-Yong Yang, Yuxing Li, Carl-Magnus Hogerkorp, William R. Schief, Michael S. Seaman, Tongqing Zhou, Stephen D. Schmidt, Lan Wu, Ling Xu, Nancy S. Longo, Krisha McKee, Sijy O'Dell, Mark K. Louder, Diane L. Wycuff, Yu Feng, Martha Nason, Nicole Doria-Rose, Mark Connors, Peter D. Kwong, Mario Roederer, Richard T. Wyatt, Gary J. Nabel, and John R. Mascola. Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 329(5993):856-861, 13 Aug 2010. PubMed ID: 20616233. Show all entries for this paper.

Wyatt1992 R. Wyatt, M. Thali, S. Tilley, A. Pinter, M. Posner, D. Ho, J. Robinson, and J. Sodroski. Relationship of the Human Immunodeficiency Virus Type 1 gp120 Third Variable Loop to Elements of the CD4 Binding Site. J. Virol., 66:6997-7004, 1992. This paper examines mutations which alter MAb binding and neutralization. Anti-V3 MAb 9284 has enhanced binding due to a mutation in the C4 region that is also important for CD4 binding, and anti-CD4 binding MAbs F105, 1.5e and 1125H show increased precipitation of a gp120 from which the V3 loop was deleted, relative to wild type, in RIPA buffer containing non-ionic detergents. PubMed ID: 1279195. Show all entries for this paper.

Wyatt1993 R. Wyatt, N. Sullivan, M. Thali, H. Repke, D. Ho, J. Robinson, M. Posner, and J. Sodroski. Functional and Immunologic Characterization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Containing Deletions of the Major Variable Regions. J. Virol., 67:4557-4565, 1993. Affinity of neutralizing MAbs directed against the CD4 binding site was increased dramatically by deletion mutants across the V1/V2 and V3 structures, suggesting that these domains mask these conserved discontinuous epitopes. PubMed ID: 8331723. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Wyatt1998 R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A. Hendrickson, and J. G. Sodroski. The Antigenic Structure of the HIV gp120 Envelope Glycoprotein. Nature, 393:705-711, 1998. Comment in Nature 1998 Jun 18;393(6686):630-1. The spatial organization of the neutralizing epitopes of gp120 is described, based on epitope maps interpreted in the context of the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. PubMed ID: 9641684. Show all entries for this paper.

Xiang2002 Shi-Hua. Xiang, Peter D. Kwong, Rishi Gupta, Carlo D. Rizzuto, David J. Casper, Richard Wyatt, Liping Wang, Wayne A. Hendrickson, Michael L. Doyle, and Joseph Sodroski. Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 76(19):9888-9899, Oct 2002. PubMed ID: 12208966. Show all entries for this paper.

Yang2005b Xinzhen Yang, Svetla Kurteva, Sandra Lee, and Joseph Sodroski. Stoichiometry of Antibody Neutralization of Human Immunodeficiency Virus Type 1. J. Virol., 79(6):3500-3508, Mar 2005. PubMed ID: 15731244. Show all entries for this paper.

Yuan2006 Wen Yuan, Jessica Bazick, and Joseph Sodroski. Characterization of the Multiple Conformational States of Free Monomeric and Trimeric Human Immunodeficiency Virus Envelope Glycoproteins after Fixation by Cross-Linker. J. Virol., 80(14):6725-6737, Jul 2006. PubMed ID: 16809278. Show all entries for this paper.

Zhang2002 Peng Fei Zhang, Peter Bouma, Eun Ju Park, Joseph B. Margolick, James E. Robinson, Susan Zolla-Pazner, Michael N. Flora, and Gerald V. Quinnan, Jr. A Variable Region 3 (V3) Mutation Determines a Global Neutralization Phenotype and CD4-Independent Infectivity of a Human Immunodeficiency Virus Type 1 Envelope Associated with a Broadly Cross-Reactive, Primary Virus-Neutralizing Antibody Response. J. Virol., 76(2):644-655, Jan 2002. PubMed ID: 11752155. Show all entries for this paper.

Zhou2007 Tongqing Zhou, Ling Xu, Barna Dey, Ann J. Hessell, Donald Van Ryk, Shi-Hua Xiang, Xinzhen Yang, Mei-Yun Zhang, Michael B. Zwick, James Arthos, Dennis R. Burton, Dimiter S. Dimitrov, Joseph Sodroski, Richard Wyatt, Gary J. Nabel, and Peter D. Kwong. Structural Definition of a Conserved Neutralization Epitope on HIV-1 gp120. Nature, 445(7129):732-737, 15 Feb 2007. PubMed ID: 17301785. Show all entries for this paper.

Zwick2003a Michael B. Zwick, Robert Kelleher, Richard Jensen, Aran F. Labrijn, Meng Wang, Gerald V. Quinnan, Jr., Paul W. H. I. Parren, and Dennis R. Burton. A Novel Human Antibody against Human Immunodeficiency Virus Type 1 gp120 Is V1, V2, and V3 Loop Dependent and Helps Delimit the Epitope of the Broadly Neutralizing Antibody Immunoglobulin G1 b12. J. Virol., 77(12):6965-6978, Jun 2003. PubMed ID: 12768015. Show all entries for this paper.

Schiffner2018 Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590. Show all entries for this paper.


Displaying record number 630

Download this epitope record as JSON.

MAb ID 21h (2.1H)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, LA
Epitope
Ab Type gp120 CD4BS
Neutralizing L
Species (Isotype) human(IgG1)
Patient N70
Immunogen HIV-1 infection
Keywords acute/early infection, antibody binding site, antibody interactions, antibody sequence, binding affinity, review, structure, subtype comparisons, vaccine antigen design, variant cross-reactivity

Notes

Showing 26 of 26 notes.

References

Showing 28 of 28 references.

Bagley1994 J. Bagley, P. J. Dillon, C. Rosen, J. Robinson, J. Sodroski, and W. A. Marasco. Structural Characterization of Broadly Neutralizing Human Monoclonal Antibodies Against the CD4 Binding Site of HIV-1 gp120. Mol. Immunol., 31(15):1149-1160, 1994. This paper is a detailed study of the V-D-J heavy chain usage and V-J light chain usage for the three monoclonals that bind to the HIV-1 envelope CD4 binding site: F105, 15e and 21h. Different germline genes were used, and there was evidence for antigen-drive clonal selection of somatic mutations. Eight positions in the heavy chain and two in the light chain complementarity determining positions were identical in the three Mabs. PubMed ID: 7935503. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Fouts1998 T. R. Fouts, A. Trkola, M. S. Fung, and J. P. Moore. Interactions of Polyclonal and Monoclonal Anti-Glycoprotein 120 Antibodies with Oligomeric Glycoprotein 120-Glycoprotein 41 Complexes of a Primary HIV Type 1 Isolate: Relationship to Neutralization. AIDS Res. Hum. Retroviruses, 14:591-597, 1998. Ab reactivity to oligomeric forms of gp120 were compared to neutralization of the macrophage tropic primary virus JRFL, and did not always correlate. This builds upon studies which have shown that oligomer binding while required for neutralization, is not always sufficient. MAb 205-46-9 and 2G6 bind oligomer with high affinity, comparable to IgG1b12, but unlike IgG1b12, cannot neutralize JRFL. Furthermore, neutralizing and non-neutralizing sera from HIV-1 infected people are similar in their reactivities to oligomeric JRFL Envelope. PubMed ID: 9591713. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.

Ho1992 D. D. Ho, M. S. C. Fung, H. Yoshiyama, Y. Cao, and J. E. Robinson. Discontinuous Epitopes on gp120 Important in HIV-1 Neutralization. AIDS Res. Hum. Retroviruses, 8:1337-1339, 1992. Further description of the human MAb 15e and the murine MAb G3-4. gp120 mutants that affect 15e epitope binding: 113, 257, 368, 370, 421, 427, 475; four of these coincide with amino acids important for the CD4 binding domain. G3-4 is neutralizing and behaves like a discontinuous epitope, and partially blocks sCD4 binding. PubMed ID: 1281654. Show all entries for this paper.

Li1997 A. Li, T. W. Baba, J. Sodroski, S. Zolla-Pazner, M. K. Gorny, J. Robinson, M. R. Posner, H. Katinger, C. F. Barbas III, D. R. Burton, T.-C. Chou, and R. M Ruprecht. Synergistic Neutralization of a Chimeric SIV/HIV Type 1 Virus with Combinations of Human Anti-HIV Type 1 Envelope Monoclonal Antibodies or Hyperimmune Globulins. AIDS Res. Hum. Retroviruses, 13:647-656, 1997. Multiple combinations of MAbs were tested for their ability to synergize neutralization of a SHIV construct containing HIV IIIB env. All of the MAb combinations tried were synergistic, suggesting such combinations may be useful for passive immunotherapy or immunoprophylaxis. Because SHIV can replicate in rhesus macaques, such approaches can potentially be studied in an it in vivo monkey model. PubMed ID: 9168233. Show all entries for this paper.

McKeating1996b J. A. McKeating, Y. J. Zhang, C. Arnold, R. Frederiksson, E. M. Fenyo, and P. Balfe. Chimeric viruses expressing primary envelope glycoproteins of human immunodeficiency virus type I show increased sensitivity to neutralization by human sera. Virology, 220:450-460, 1996. Chimeric viruses for HXB2 with primary isolate gp120 gave patterns of cell tropism and cytopathicity identical to the original primary viruses. Sera that were unable to neutralize the primary isolates were in some cases able to neutralize chimeric viruses, indicating that some of the neutralizing epitopes were in gp41. PubMed ID: 8661395. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Moore1994d J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol., 68:5142-5155, 1994. Three seroconverting individuals were studied. The earliest detectable anti-gp120 antibodies were both conformational and anti-V3 loop, and could be detected only after the peak viremia has passed. No uniform pattern of autologous neutralizing anti-CD4BS or anti-V3 MAbs was observed. PubMed ID: 8035514. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Thali1992a M. Thali, C. Furman, D. D. Ho, J. Robinson, S. Tilley, A. Pinter, and J. Sodroski. Discontinuous, Conserved Neutralization Epitopes Overlapping the CD4-Binding Region of Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 66:5635-5641, 1992. Maps the relationship between amino acid substitutions that reduce CD4-gp120 interaction, and amino acid substitutions that reduce the binding of discontinuous epitope MAbs that inhibit CD4 binding. PubMed ID: 1380099. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Ugolini1997 S. Ugolini, I. Mondor, P. W. H. I Parren, D. R. Burton, S. A. Tilley, P. J. Klasse, and Q. J. Sattentau. Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line-Adapted HIV-1 Neutralization. J. Exp. Med., 186:1287-1298, 1997. PubMed ID: 9334368. Show all entries for this paper.

Wisnewski1996 A. Wisnewski, L. Cavacini, and M. Posner. Human antibody variable region gene usage in HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 11:31-38, 1996. PubMed ID: 8528730. Show all entries for this paper.

Wyatt1993 R. Wyatt, N. Sullivan, M. Thali, H. Repke, D. Ho, J. Robinson, M. Posner, and J. Sodroski. Functional and Immunologic Characterization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Containing Deletions of the Major Variable Regions. J. Virol., 67:4557-4565, 1993. Affinity of neutralizing MAbs directed against the CD4 binding site was increased dramatically by deletion mutants across the V1/V2 and V3 structures, suggesting that these domains mask these conserved discontinuous epitopes. PubMed ID: 8331723. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Wyatt1998 R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A. Hendrickson, and J. G. Sodroski. The Antigenic Structure of the HIV gp120 Envelope Glycoprotein. Nature, 393:705-711, 1998. Comment in Nature 1998 Jun 18;393(6686):630-1. The spatial organization of the neutralizing epitopes of gp120 is described, based on epitope maps interpreted in the context of the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. PubMed ID: 9641684. Show all entries for this paper.

Xiang2002 Shi-Hua. Xiang, Peter D. Kwong, Rishi Gupta, Carlo D. Rizzuto, David J. Casper, Richard Wyatt, Liping Wang, Wayne A. Hendrickson, Michael L. Doyle, and Joseph Sodroski. Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 76(19):9888-9899, Oct 2002. PubMed ID: 12208966. Show all entries for this paper.

Gorny2009 Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.


Displaying record number 658

Download this epitope record as JSON.

MAb ID 17b (1.7b, sCD4-17b, 1.7B)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, New Orleans, LA, USA
Epitope (Discontinuous epitope)
Ab Type gp120 CD4i CoRBS (Cluster C)
Neutralizing L P (weak)  View neutralization details
Contacts and Features View contacts and features
Species (Isotype) human
Patient N70
Immunogen HIV-1 infection
Keywords acute/early infection, ADCC, adjuvant comparison, antibody binding site, antibody generation, antibody interactions, antibody lineage, antibody polyreactivity, antibody sequence, assay or method development, autoantibody or autoimmunity, autologous responses, binding affinity, brain/CSF, broad neutralizer, co-receptor, computational epitope prediction, dendritic cells, drug resistance, dynamics, enhancing activity, escape, glycosylation, HAART, ART, immunoprophylaxis, immunotherapy, kinetics, mimics, mimotopes, neutralization, polyclonal antibodies, review, structure, subtype comparisons, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity, viral fitness and reversion

Notes

Showing 270 of 270 notes.

References

Showing 275 of 275 references.

Aasa-Chapman2011 Marlén M. I. Aasa-Chapman, Kelly M. Cheney, Stéphane Hué, Anna Forsman, Stephen O'Farrell, Pierre Pellegrino, Ian Williams, and Áine McKnight. In Vivo Emergence of HIV-1 Highly Sensitive to Neutralizing Antibodies. PLoS One, 6(8):e23961, 2011. PubMed ID: 21887353. Show all entries for this paper.

Acharya2013 Priyamvada Acharya, Timothy S. Luongo, Ivelin S. Georgiev, Julie Matz, Stephen D. Schmidt, Mark K. Louder, Pascal Kessler, Yongping Yang, Krisha McKee, Sijy O'Dell, Lei Chen, Daniel Baty, Patrick Chames, Loic Martin, John R. Mascola, and Peter D. Kwong. Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites. J. Virol., 87(18):10173-10181, Sep 2013. PubMed ID: 23843638. Show all entries for this paper.

Agrawal-Gamse2009 Caroline Agrawal-Gamse, Fang-Hua Lee, Beth Haggarty, Andrea P. O. Jordan, Yanjie Yi, Benhur Lee, Ronald G. Collman, James A. Hoxie, Robert W. Doms, and Meg M. Laakso. Adaptive Mutations in a Human Immunodeficiency Virus Type 1 Envelope Protein with a Truncated V3 Loop Restore Function by Improving Interactions with CD4. J. Virol., 83(21):11005-11015, Nov 2009. PubMed ID: 19692476. Show all entries for this paper.

Arthos2002 James Arthos, Claudia Cicala, Tavis D. Steenbeke, Tae-Wook Chun, Charles Dela Cruz, Douglas B. Hanback, Prateeti Khazanie, Daniel Nam, Peter Schuck, Sara M. Selig, Donald Van Ryk, Margery A. Chaikin, and Anthony S. Fauci. Biochemical and Biological Characterization of a Dodecameric CD4-Ig Fusion Protein: Implications for Therapeutic and Vaccine Strategies. J. Biol. Chem., 277(13):11456-11464, 29 Mar 2002. PubMed ID: 11805109. Show all entries for this paper.

Banerjee2009 Kaustuv Banerjee, Sofija Andjelic, Per Johan Klasse, Yun Kang, Rogier W. Sanders, Elizabeth Michael, Robert J. Durso, Thomas J. Ketas, William C. Olson, and John P. Moore. Enzymatic Removal of Mannose Moieties Can Increase the Immune Response to HIV-1 gp120 In Vivo. Virology, 389(1-2):108-121, 20 Jun 2009. PubMed ID: 19410272. Show all entries for this paper.

Basmaciogullar2002 Stéphane Basmaciogullari, Gregory J. Babcock, Donald Van Ryk, Woj Wojtowicz, and Joseph Sodroski. Identification of Conserved and Variable Structures in the Human Immunodeficiency Virus gp120 Glycoprotein of Importance for CXCR4 Binding. J. Virol., 76(21):10791-800, Nov 2002. PubMed ID: 12368322. Show all entries for this paper.

Beauparlant2017 David Beauparlant, Peter Rusert, Carsten Magnus, Claus Kadelka, Jacqueline Weber, Therese Uhr, Osvaldo Zagordi, Corinna Oberle, Maria J. Duenas-Decamp, Paul R. Clapham, Karin J. Metzner, Huldrych F. Gunthard, and Alexandra Trkola. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog, 13(3):e1006255 doi, Mar 2017. PubMed ID: 28264054 Show all entries for this paper.

Beretta1994 A. Beretta and A.G. Dalgleish. B-Cell Epitopes. AIDS, 8(suppl 1):S133-S145, 1994. Show all entries for this paper.

Berro2009 Reem Berro, Rogier W. Sanders, Min Lu, Per J. Klasse, and John P. Moore. Two HIV-1 Variants Resistant to Small Molecule CCR5 Inhibitors Differ in How They Use CCR5 for Entry. PLoS Pathog., 5(8):e1000548, Aug 2009. PubMed ID: 19680536. Show all entries for this paper.

Billington2007 J. Billington, T. P. Hickling, G. H. Munro, C. Halai, R. Chung, G. G. Dodson, and R. S. Daniels. Stability of a Receptor-Binding Active Human Immunodeficiency Virus Type 1 Recombinant gp140 Trimer Conferred by Intermonomer Disulfide Bonding of the V3 Loop: Differential Effects of Protein Disulfide Isomerase on CD4 and Coreceptor Binding. J. Virol., 81(9):4604-4614, May 2007. PubMed ID: 17301129. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Binley1998 J. M. Binley, R. Wyatt, E. Desjardins, P. D. Kwong, W. Hendrickson, J. P. Moore, and J. Sodroski. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retroviruses, 14:191-198, 1998. This paper helped showed the biological relevance of a deglycosylated variable loop deleted form of the core gp120. PubMed ID: 9491908. Show all entries for this paper.

Binley2000 J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724. Show all entries for this paper.

Binley2003 James M. Binley, Charmagne S. Cayanan, Cheryl Wiley, Norbert Schülke, William C. Olson, and Dennis R. Burton. Redox-Triggered Infection by Disulfide-Shackled Human Immunodeficiency Virus Type 1 Pseudovirions. J. Virol., 77(10):5678-5684, May 2003. PubMed ID: 12719560. Show all entries for this paper.

Binley2006 James M. Binley, Stacie Ngo-Abdalla, Penny Moore, Michael Bobardt, Udayan Chatterji, Philippe Gallay, Dennis R. Burton, Ian A. Wilson, John H. Elder, and Aymeric de Parseval. Inhibition of HIV Env Binding to Cellular Receptors by Monoclonal Antibody 2G12 as Probed by Fc-Tagged gp120. Retrovirology, 3:39, 2006. PubMed ID: 16817962. Show all entries for this paper.

Binley2010 James M Binley, Yih-En Andrew Ban, Emma T. Crooks, Dirk Eggink, Keiko Osawa, William R. Schief, and Rogier W. Sanders. Role of Complex Carbohydrates in Human Immunodeficiency Virus Type 1 Infection and Resistance to Antibody Neutralization. J. Virol., 84(11):5637-5655, Jun 2010. PubMed ID: 20335257. Show all entries for this paper.

Biorn2004 Alyssa C. Biorn, Simon Cocklin, Navid Madani, Zhihai Si, Tijana Ivanovic, James Samanen, Donald I. Van Ryk, Ralph Pantophlet, Dennis R. Burton, Ernesto Freire, Joseph Sodroski, and Irwin M. Chaiken. Mode of Action for Linear Peptide Inhibitors of HIV-1 gp120 Interactions. Biochemistry, 43(7):1928-1938, 24 Feb 2004. PubMed ID: 14967033. Show all entries for this paper.

Bontjer2009 Ilja Bontjer, Aafke Land, Dirk Eggink, Erwin Verkade, Kiki Tuin, Chris Baldwin, Georgios Pollakis, William A. Paxton, Ineke Braakman, Ben Berkhout, and Rogier W. Sanders. Optimization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins with V1/V2 Deleted, Using Virus Evolution. J. Virol., 83(1):368-383, Jan 2009. PubMed ID: 18922866. Show all entries for this paper.

Bontjer2010 Ilja Bontjer, Mark Melchers, Dirk Eggink, Kathryn David, John P. Moore, Ben Berkhout, and Rogier W. Sanders. Stabilized HIV-1 Envelope Glycoprotein Trimers Lacking the V1V2 Domain, Obtained by Virus Evolution. J. Biol. Chem, 285(47):36456-36470, 19 Nov 2010. PubMed ID: 20826824. Show all entries for this paper.

Bradley2016a Todd Bradley, Ashley Trama, Nancy Tumba, Elin Gray, Xiaozhi Lu, Navid Madani, Fatemeh Jahanbakhsh, Amanda Eaton, Shi-Mao Xia, Robert Parks, Krissey E. Lloyd, Laura L. Sutherland, Richard M. Scearce, Cindy M. Bowman, Susan Barnett, Salim S. Abdool-Karim, Scott D. Boyd, Bruno Melillo, Amos B. Smith, 3rd., Joseph Sodroski, Thomas B. Kepler, S. Munir Alam, Feng Gao, Mattia Bonsignori, Hua-Xin Liao, M Anthony Moody, David Montefiori, Sampa Santra, Lynn Morris, and Barton F. Haynes. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 12:196-207, Oct 2016. PubMed ID: 27612593. Show all entries for this paper.

Brower2009