HIV molecular immunology database


Search Antibody Database

Found 1 matching record:

Displaying record number 645

Download this epitope record as JSON.

MAb ID HT6 (205-42-15)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact Ciba-Geigy AG Basel, Switzerland, and Tanox Biosystems, Houston, Texas
Ab Type gp120 CD4BS
Neutralizing L (weak)
Species (Isotype) human
Immunogen HIV-1 infection
Keywords antibody binding site, antibody interactions, review, subtype comparisons, variant cross-reactivity, viral fitness and reversion


Showing 9 of 9 notes.


Showing 9 of 9 references.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Moore1995b J. P. Moore, Y. Cao, L. Qing, Q. J. Sattentau, J. Pyati, R. Koduri, J. Robinson, C. F. Barbas III, D. R. Burton, and D. D. Ho. Primary Isolates of Human Immunodeficiency Virus Type I Are Relatively Resistant to Neutralization by Monoclonal Antibodies to gp120, and Their Neutralization Is Not Predicted by Studies with Monomeric gp120. J. Virol., 69:101-109, 1995. A panel of anti-gp120 MAbs and sera from HIV-1 infected individuals was tested for its ability to neutralize primary isolates. Most MAbs bound with high affinity to gp120 monomers from the various isolates, but were not effective at neutralizing. The MAb IgG1b12, which binds to a discontinuous anti-CD4 binding site epitope, was able to neutralize most of the primary isolates. PubMed ID: 7527081. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Fouts1998 T. R. Fouts, A. Trkola, M. S. Fung, and J. P. Moore. Interactions of Polyclonal and Monoclonal Anti-Glycoprotein 120 Antibodies with Oligomeric Glycoprotein 120-Glycoprotein 41 Complexes of a Primary HIV Type 1 Isolate: Relationship to Neutralization. AIDS Res. Hum. Retroviruses, 14:591-597, 1998. Ab reactivity to oligomeric forms of gp120 were compared to neutralization of the macrophage tropic primary virus JRFL, and did not always correlate. This builds upon studies which have shown that oligomer binding while required for neutralization, is not always sufficient. MAb 205-46-9 and 2G6 bind oligomer with high affinity, comparable to IgG1b12, but unlike IgG1b12, cannot neutralize JRFL. Furthermore, neutralizing and non-neutralizing sera from HIV-1 infected people are similar in their reactivities to oligomeric JRFL Envelope. PubMed ID: 9591713. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Herrera2003 Carolina Herrera, Catherine Spenlehauer, Michael S. Fung, Dennis R. Burton, Simon Beddows, and John P. Moore. Nonneutralizing Antibodies to the CD4-Binding Site on the gp120 Subunit of Human Immunodeficiency Virus Type 1 Do Not Interfere with the Activity of a Neutralizing Antibody against the Same Site. J. Virol., 77(2):1084-1091, Jan 2003. PubMed ID: 12502824. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: LA-UR 04-8162. Show all entries for this paper.

Pugach2004 Pavel Pugach, Shawn E. Kuhmann, Joann Taylor, Andre J. Marozsan, Amy Snyder, Thomas Ketas, Steven M. Wolinsky, Bette T. Korber, and John P. Moore. The Prolonged Culture of Human Immunodeficiency Virus Type 1 in Primary Lymphocytes Increases its Sensitivity to Neutralization by Soluble CD4. Virology, 321(1):8-22, 30 Mar 2004. PubMed ID: 15033560. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Questions or comments? Contact us at
Managed by Triad National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration
Copyright © 2022 Triad National Security, LLC | Disclaimer/Privacy

Dept of Health & Human Services Los Alamos National Institutes of Health