HIV molecular immunology database

 

Search Antibody Database

Found 1 matching record:

Displaying record number 630

Download this epitope record as JSON.

MAb ID 21h (2.1H)
HXB2 Location Env Env Epitope Map
Author Location gp120
Research Contact James Robinson, Tulane University, LA
Epitope
Ab Type gp120 CD4BS
Neutralizing L
Species (Isotype) human(IgG1)
Patient N70
Immunogen HIV-1 infection
Keywords acute/early infection, antibody binding site, antibody interactions, antibody sequence, binding affinity, review, structure, subtype comparisons, vaccine antigen design, variant cross-reactivity

Notes

Showing 26 of 26 notes.

References

Showing 28 of 28 references.

Bagley1994 J. Bagley, P. J. Dillon, C. Rosen, J. Robinson, J. Sodroski, and W. A. Marasco. Structural Characterization of Broadly Neutralizing Human Monoclonal Antibodies Against the CD4 Binding Site of HIV-1 gp120. Mol. Immunol., 31(15):1149-1160, 1994. This paper is a detailed study of the V-D-J heavy chain usage and V-J light chain usage for the three monoclonals that bind to the HIV-1 envelope CD4 binding site: F105, 15e and 21h. Different germline genes were used, and there was evidence for antigen-drive clonal selection of somatic mutations. Eight positions in the heavy chain and two in the light chain complementarity determining positions were identical in the three Mabs. PubMed ID: 7935503. Show all entries for this paper.

Binley1997 J. M. Binley, H. Arshad, T. R. Fouts, and J. P. Moore. An investigation of the high avidity antibody response to gp120 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13:1007-1015, 1997. PubMed ID: 9264287. Show all entries for this paper.

Fouts1997 T. R. Fouts, J. M. Binley, A. Trkola, J. E. Robinson, and J. P. Moore. Neutralization of the Human Immunodeficiency Virus Type 1 Primary Isolate JR-FL by Human Monoclonal Antibodies Correlates with Antibody Binding to the Oligomeric Form of the Envelope Glycoprotein Complex. J. Virol., 71:2779-2785, 1997. To test whether antibody neutralization of HIV-1 primary isolates is correlated with the affinities for the oligomeric envelope glycoproteins, JRFL was used as a model primary virus and a panel of 13 human MAbs were evaluated for: half-maximal binding to rec monomeric JRFL gp120; half-maximal binding to oligomeric - JRFL Env expressed on the surface of transfected 293 cells; and neutralization of JRFL in a PBMC-based neutralization assay. Antibody affinity for oligomeric JRFL Env but not monomeric JRFL gp120 correlated with JRFL neutralization. PubMed ID: 9060632. Show all entries for this paper.

Fouts1998 T. R. Fouts, A. Trkola, M. S. Fung, and J. P. Moore. Interactions of Polyclonal and Monoclonal Anti-Glycoprotein 120 Antibodies with Oligomeric Glycoprotein 120-Glycoprotein 41 Complexes of a Primary HIV Type 1 Isolate: Relationship to Neutralization. AIDS Res. Hum. Retroviruses, 14:591-597, 1998. Ab reactivity to oligomeric forms of gp120 were compared to neutralization of the macrophage tropic primary virus JRFL, and did not always correlate. This builds upon studies which have shown that oligomer binding while required for neutralization, is not always sufficient. MAb 205-46-9 and 2G6 bind oligomer with high affinity, comparable to IgG1b12, but unlike IgG1b12, cannot neutralize JRFL. Furthermore, neutralizing and non-neutralizing sera from HIV-1 infected people are similar in their reactivities to oligomeric JRFL Envelope. PubMed ID: 9591713. Show all entries for this paper.

Gorny2003 Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162. Show all entries for this paper.

Ho1991a D. D. Ho, J. A. McKeating, X. L. Li, T. Moudgil, E. S. Daar, N.-C. Sun, and J. E. Robinson. Conformational Epitope of gp120 Important in CD4 Binding and Human Immunodeficiency Virus Type 1 Neutralization Identified by a Human Monoclonal Antibody. J. Virol., 65:489-493, 1991. A description of the neutralizing human MAb 15e. It binds to HIV-1 with a broad specificity, and blocks gp120 binding to CD4, and is a discontinuous epitope; DTT reduction of env abrogates binding. PubMed ID: 1702163. Show all entries for this paper.

Ho1992 D. D. Ho, M. S. C. Fung, H. Yoshiyama, Y. Cao, and J. E. Robinson. Discontinuous Epitopes on gp120 Important in HIV-1 Neutralization. AIDS Res. Hum. Retroviruses, 8:1337-1339, 1992. Further description of the human MAb 15e and the murine MAb G3-4. gp120 mutants that affect 15e epitope binding: 113, 257, 368, 370, 421, 427, 475; four of these coincide with amino acids important for the CD4 binding domain. G3-4 is neutralizing and behaves like a discontinuous epitope, and partially blocks sCD4 binding. PubMed ID: 1281654. Show all entries for this paper.

Li1997 A. Li, T. W. Baba, J. Sodroski, S. Zolla-Pazner, M. K. Gorny, J. Robinson, M. R. Posner, H. Katinger, C. F. Barbas III, D. R. Burton, T.-C. Chou, and R. M Ruprecht. Synergistic Neutralization of a Chimeric SIV/HIV Type 1 Virus with Combinations of Human Anti-HIV Type 1 Envelope Monoclonal Antibodies or Hyperimmune Globulins. AIDS Res. Hum. Retroviruses, 13:647-656, 1997. Multiple combinations of MAbs were tested for their ability to synergize neutralization of a SHIV construct containing HIV IIIB env. All of the MAb combinations tried were synergistic, suggesting such combinations may be useful for passive immunotherapy or immunoprophylaxis. Because SHIV can replicate in rhesus macaques, such approaches can potentially be studied in an it in vivo monkey model. PubMed ID: 9168233. Show all entries for this paper.

McKeating1996b J. A. McKeating, Y. J. Zhang, C. Arnold, R. Frederiksson, E. M. Fenyo, and P. Balfe. Chimeric viruses expressing primary envelope glycoproteins of human immunodeficiency virus type I show increased sensitivity to neutralization by human sera. Virology, 220:450-460, 1996. Chimeric viruses for HXB2 with primary isolate gp120 gave patterns of cell tropism and cytopathicity identical to the original primary viruses. Sera that were unable to neutralize the primary isolates were in some cases able to neutralize chimeric viruses, indicating that some of the neutralizing epitopes were in gp41. PubMed ID: 8661395. Show all entries for this paper.

Moore1993a J. P. Moore and D. D. Ho. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J. Virol., 67:863-875, 1993. CD4BS antibodies are prevalent in HIV-1-positive sera, while neutralizing MAbs to C4, V2, and V3 and MAbs to linear epitopes are less common. Most linear epitope MAbs in human sera are directed against the V3 region, and cross-reactive MAbs tend to be directed against discontinuous epitopes. PubMed ID: 7678308. Show all entries for this paper.

Moore1994b J. P. Moore, F. E. McCutchan, S.-W. Poon, J. Mascola, J. Liu, Y. Cao, and D. D. Ho. Exploration of Antigenic Variation in gp120 from Clades A through F of Human Immunodeficiency Virus Type 1 by Using Monoclonal Antibodies. J. Virol., 68:8350-8364, 1994. Four of five anti-V3 MAbs were slightly cross-reactive within clade B, but not very reactive outside clade B. Two discontinuous CD4 binding site Mabs appear to be pan-reactive. Anti-V2 MAbs were only sporadically reactive inside and outside of clade B. PubMed ID: 7525988. Show all entries for this paper.

Moore1994d J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol., 68:5142-5155, 1994. Three seroconverting individuals were studied. The earliest detectable anti-gp120 antibodies were both conformational and anti-V3 loop, and could be detected only after the peak viremia has passed. No uniform pattern of autologous neutralizing anti-CD4BS or anti-V3 MAbs was observed. PubMed ID: 8035514. Show all entries for this paper.

Moore1996 J. P. Moore and J. Sodroski. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol., 70:1863-1872, 1996. 46 anti-gp120 monomer MAbs were used to create a competition matrix, and MAb competition groups were defined. The data suggests that there are two faces of the gp120 glycoprotein: a face occupied by the CD4BS, which is presumably also exposed on the oligomeric envelope glycoprotein complex, and a second face which is presumably inaccessible on the oligomer and interacts with a number of nonneutralizing antibodies. PubMed ID: 8627711. Show all entries for this paper.

Parren1997 P. W. Parren, M. C. Gauduin, R. A. Koup, P. Poignard, Q. J. Sattentau, P. Fisicaro, and D. R. Burton. Erratum to Relevance of the Antibody Response against Human Immunodeficiency Virus Type 1 Envelope to Vaccine Design. Immunol. Lett., 58:125-132, 1997. corrected and republished article originally printed in Immunol. Lett. 1997 Jun;57(1-3):105-112. PubMed ID: 9271324. Show all entries for this paper.

Parren1998 P. W. Parren, I. Mondor, D. Naniche, H. J. Ditzel, P. J. Klasse, D. R. Burton, and Q. J. Sattentau. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol., 72:3512-9, 1998. The authors propose that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Neutralization was assayed T-cell-line-adapted HIV-1 isolates. Binding of Fabs to monomeric rgp120 was not correlated with binding to functional oligomeric gp120 or neutralization, while binding to functional oligomeric gp120 was highly correlated with neutralization. The ratios of oligomer binding/neutralization were similar for antibodies to different neutralization epitopes, with a few exceptions. PubMed ID: 9557629. Show all entries for this paper.

Poignard1996b P. Poignard, T. Fouts, D. Naniche, J. P. Moore, and Q. J. Sattentau. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med., 183:473-484, 1996. Binding of Anti-V3 and the CD4I neutralizing MAbs induces shedding of gp120 on cells infected with the T-cell line-adapted HIV-1 molecular clone Hx10. This was shown by significant increases of gp120 in the supernatant, and exposure of a gp41 epitope that is masked in the oligomer. MAbs binding either to the V2 loop or to CD4BS discontinuous epitopes do not induce gp120 dissociation. This suggests HIV neutralization probably is caused by several mechanisms, and one of the mechanisms may involve gp120 dissociation. PubMed ID: 8627160. Show all entries for this paper.

Sattentau1995a Q. J. Sattentau and J. P. Moore. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med., 182:185-196, 1995. This study suggests that antibodies specific for one of five different binding regions on gp120 are associated with viral neutralization: V2, V3, C4, the CD4 binding site, and a complex discontinuous epitope that does not interfere with CD4 binding. Kinetic binding properties of a set of MAbs that bind to these regions were studied, analyzing binding to both functional oligomeric LAI gp120 and soluble monomeric LAI BH10 gp120; neutralization ID$_50$s were also evaluated. It was found that the neutralization ID$_50$s was related to the ability to bind oligomeric, not monomeric, gp120, and concluded that with the exception of the V3 loop, regions of gp120 that are immunogenic will be poorly presented on cell-line-adapted virions. Further, the association rate, estimated as the t$_1/2$ to reach equilibrium binding to multimeric, virion associated, gp120, appears to be a major factor relating to affinity and potency of the neutralization response to cell-line-adapted virus. PubMed ID: 7540648. Show all entries for this paper.

Srivastava2005 Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830. Show all entries for this paper.

Thali1992a M. Thali, C. Furman, D. D. Ho, J. Robinson, S. Tilley, A. Pinter, and J. Sodroski. Discontinuous, Conserved Neutralization Epitopes Overlapping the CD4-Binding Region of Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 66:5635-5641, 1992. Maps the relationship between amino acid substitutions that reduce CD4-gp120 interaction, and amino acid substitutions that reduce the binding of discontinuous epitope MAbs that inhibit CD4 binding. PubMed ID: 1380099. Show all entries for this paper.

Thali1994 M. Thali, M. Charles, C. Furman, L. Cavacini, M. Posner, J. Robinson, and J. Sodroski. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein Conferred by a gp41 Amino Acid Change. J. Virol., 68:674-680, 1994. A T->A amino acid substitution at position 582 of gp41 conferred resistance to neutralization to 30\% of HIV positive sera (Wilson et al. J Virol 64:3240-48 (1990)). Monoclonal antibodies that bound to the CD4 binding site were unable to neutralize this virus, but the mutation did not reduce the neutralizing capacity of a V2 region MAb G3-4, V3 region MAbs, or gp41 neutralizing MAb 2F5. PubMed ID: 7507184. Show all entries for this paper.

Ugolini1997 S. Ugolini, I. Mondor, P. W. H. I Parren, D. R. Burton, S. A. Tilley, P. J. Klasse, and Q. J. Sattentau. Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line-Adapted HIV-1 Neutralization. J. Exp. Med., 186:1287-1298, 1997. PubMed ID: 9334368. Show all entries for this paper.

Wisnewski1996 A. Wisnewski, L. Cavacini, and M. Posner. Human antibody variable region gene usage in HIV-1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 11:31-38, 1996. PubMed ID: 8528730. Show all entries for this paper.

Wyatt1993 R. Wyatt, N. Sullivan, M. Thali, H. Repke, D. Ho, J. Robinson, M. Posner, and J. Sodroski. Functional and Immunologic Characterization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Containing Deletions of the Major Variable Regions. J. Virol., 67:4557-4565, 1993. Affinity of neutralizing MAbs directed against the CD4 binding site was increased dramatically by deletion mutants across the V1/V2 and V3 structures, suggesting that these domains mask these conserved discontinuous epitopes. PubMed ID: 8331723. Show all entries for this paper.

Wyatt1997 R. Wyatt, E. Desjardin, U. Olshevsky, C. Nixon, J. Binley, V. Olshevsky, and J. Sodroski. Analysis of the Interaction of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein with the gp41 Transmembrane Glycoprotein. J. Virol., 71:9722-9731, 1997. This study characterized the binding of gp120 and gp41 by comparing Ab reactivity to soluble gp120 and to a soluble complex of gp120 and gp41 called sgp140. The occlusion of gp120 epitopes in the sgp140 complex provides a guide to the gp120 domains that interact with gp41, localizing them in C1 and C5 of gp120. Mutations that disrupt the binding of the occluded antibodies do not influence NAb binding or CD4 binding, thus if the gp41 binding domain is deleted, the immunologically desirable features of gp120 for vaccine design are still intact. PubMed ID: 9371638. Show all entries for this paper.

Wyatt1998 R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A. Hendrickson, and J. G. Sodroski. The Antigenic Structure of the HIV gp120 Envelope Glycoprotein. Nature, 393:705-711, 1998. Comment in Nature 1998 Jun 18;393(6686):630-1. The spatial organization of the neutralizing epitopes of gp120 is described, based on epitope maps interpreted in the context of the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. PubMed ID: 9641684. Show all entries for this paper.

Xiang2002 Shi-Hua. Xiang, Peter D. Kwong, Rishi Gupta, Carlo D. Rizzuto, David J. Casper, Richard Wyatt, Liping Wang, Wayne A. Hendrickson, Michael L. Doyle, and Joseph Sodroski. Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 76(19):9888-9899, Oct 2002. PubMed ID: 12208966. Show all entries for this paper.

Gorny2009 Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295. Show all entries for this paper.

Robinson1992 J. Robinson, H. Yoshiyama, D. Holton, S. Elliot, and D.D. Ho. Distinct Antigenic Sites on HIV gp120 Identified by a Panel of Human Monoclonal Antibodies. J. Cell Biochem., Suppl 16E:71, 1992. Show all entries for this paper.


Questions or comments? Contact us at immuno@lanl.gov
 
Managed by Triad National Security, LLC for the U.S. Department of Energy’s National Nuclear Security Administration
Copyright © 2022 Triad National Security, LLC | Disclaimer/Privacy

Dept of Health & Human Services Los Alamos National Institutes of Health