Found 1 matching record:
Displaying record number 2641
Download this epitope
record as JSON.
MAb ID |
PGT127 (PGT-127) |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
|
Epitope |
|
Ab Type |
gp120 V3 // V3 glycan (V3g) |
Neutralizing |
P View neutralization details |
Contacts and Features |
View contacts and features |
Species
(Isotype)
|
human(IgG) |
Patient |
Donor 36 |
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody gene transfer, antibody generation, antibody interactions, antibody lineage, antibody sequence, assay or method development, binding affinity, broad neutralizer, chimeric antibody, computational epitope prediction, escape, germline, glycosylation, immunoprophylaxis, neutralization, review, structure, vaccine antigen design, vaccine-induced immune responses, variant cross-reactivity |
Notes
Showing 19 of
19 notes.
-
PGT127: This study demonstrated that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens eliciting Ab responses with greater neutralization breadth. Data from four large virus panels were used to comprehensively map viral signatures associated with bNAb sensitivity, hypervariable region characteristics, and clade effects. The bNAb signatures defined for the V2 epitope region were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine which resulted in increased breadth of NAb responses compared with Env 459C alone. PGT127 was used for machine learning regression prediction and to analyze statistical details (Table S4).
Bricault2019
(antibody binding site, vaccine antigen design, computational epitope prediction, broad neutralizer)
-
PGT127: This review discusses the identification of super-Abs, where and how such Abs may be best applied and future directions for the field. PGT127 was isolated from human B cell clones and is functionally similar to super-Abs PGT121, PGT128 and PGT135. Antigenic region V3 glycan (Table:1).
Walker2018
(antibody binding site, review, broad neutralizer)
-
PGT127: A systems glycobiology approach was applied to reverse engineer the relationship between bNAb binding and glycan effects on Env proteins. Glycan occupancy was interrogated across every potential N-glycan site in 94 recombinant gp120 antigens. Using a Bayesian machine learning algorithm, bNAb-specific glycan footprints were identified and used to design antigens that selectively alter bNAb antigenicity. The novel synthesized antigens uccessfully bound to target bNAbs with enhanced and selective antigenicity.
Yu2018
(glycosylation, vaccine antigen design)
-
PGT127: HIV-1 bNAb eptiope networks were predicted using 4 algorithms informed by neutralization assays using 282 Env from multiclade viruses. Patch clusters of possible Ab epitope regions were tested for significant sensitivity by site-directed mutagenesis. Epitope (Ab binding site) networks of critical Env residues for 21 bNAb (b12, PG9, PG16, PGT121, PGT122, PGT123, PGT125, PGT126, PGT127, PGT128, PGT130, PGT131, PGT135, PGT136, PGT137, PGT141, PGT142, PGT143, PGT144, PGT145 and PGV04) were delineated and found to be located mostly in variable loops of gp120, particularly in V1/V2.
Evans2014
(antibody binding site, computational epitope prediction)
-
PGT127: A new trimeric immunogen, BG505 SOSIP.664 gp140, was developed that bound and activated most known neutralizing antibodies but generally did not bind antibodies lacking neuralizing activity. This highly stable immunogen mimics the Env spike of subtype A transmitted/founder (T/F) HIV-1 strain, BG505. Anti-V3 glycan bNAb PGT127, neutralized BG505.T332N, the pseudoviral equivalent of the immunogen BG505 SOSIP.664 gp140, and was shown to recognize and bind the immunogen too.
Sanders2013
(assay or method development, neutralization, binding affinity)
-
PGT127: Using an escape virus isolated from the PGT125-131 donor, this study found that mutating the V3 core and repositioning critical N-linked glycosylations N295 and N332 could restore virus sensitivity. PGT128 and PGT130 required different sets of changes in order to restore sensitivity, suggesting that this family of bNAbs has two recognition classes (Fig. 2). For example N332 repositioning and 7 amino acid mutations V307I, H308R, E321D, V322I, N325D, P326I, F320H restored PGT128 but not PGT130 virus sensitivity.
Krumm2016
(glycosylation, escape)
-
PGT127: The IGHV region is central to Ag binding and consists of 48 functional genes. IGHV repertoire of 28 HIV-infected South African women, 13 of whom developed bNAbs, was sequenced. Novel IGHV repertoires were reported, including 85 entirely novel sequences and 38 sequences that matched rearranged sequences in non-IMGT databases. There were no significant differences in germline IGHV repertoires between individuals who do and do not develop bNAbs. IGHV gene usage of multiple well known HIV-1 bNAbs was also analyzed and 14 instances were identified where the novel non-IMGT alleles identified in this study, provided the same or a better match than their currently defined IMGT allele. For PGT127 the published IMGT predicted allele was IGHV4-39*07 and alternate allele predicted from IGHV alleles in 28 South African individuals was IGHV4-39*7m2, with synonymous G298C nucleotide change.
Scheepers2015
(antibody lineage)
-
PGT127: This study describes a new level of complexity in antibody recognition of the mixed glycan-protein epitopes of the N332 region of HIV gp120. A combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/334 glycan site and up to 66% coverage for viruses that lack the N332/334 glycan site. PGT127 was only capable of neutralizing half of the N334 isolates.
Sok2014a
(antibody interactions, glycosylation)
-
PGT127: The human Ab gene repertoires of uninfected and HIV-1-infected individuals were studied at genomic DNA (gDNA) and cDNA levels to determine the frequencies of putative germline Ab genes of known HIV-1 bnAbs. All libraries were deep sequenced and analysed using IMGT/HighV-QUEST software (http://imgt.org/HighV-QUEST/index. The human gDNA Ab libraries were more diverse in heavy and light chain V-gene lineage usage than the cDNA libraries. This implied that the human gDNA Ab gene repertoires may have more potential than the cDNA repertoires to develop HIV-1 bnmAbs. Relatively high frequencies of the VH and VKs and VLs that used the same V-genes and had the same CDR3 lengths as known HIV-1 bnmAbs regardless of (D)J-gene usage. Frequencies of the VLs with the identical VJ recombinations to PGT127 were relatively high. The putative germline genes were determined for a set of mAbs (b12, VRC01, VRC03, NIH45-46, 3BNC60, PG9, PGT127, and X5).
Zhang2013
(antibody lineage, germline)
-
PGT127: Incomplete neutralization may decrease the ability of bnAbs to protect against HIV exposure. In order to determine the extent of non-sigmoidal slopes that plateau at <100% neutralization, a panel of 24 bnMAbs targeting different regions on Env was tested in a quantitative pseudovirus neutralization assay on a panel of 278 viral clones. All bNAbs had some viruses that they neutralized with a plateau <100%, but those targeting the V2 apex and MPER did so more often. All bnMAbs assayed had some viruses for which they had incomplete neutralization and non-sigmoidal neutralization curves. bNAbs were grouped into 3 groups based on their neutralization curves: group 1 antibodies neutralized more than 90% of susceptible viruses to >95% (PGT121-123, PGT125-128, PGT136, PGV04); group 2 was less effective, resulting in neutralization of 60-84% of susceptible viruses to >95% (b12, PGT130-131, PGT135, PGT137, PGT141-143, PGT145, 2G12, PG9); group 3 neutralized only 36-60% of susceptible viruses to >95% (PG16, PGT144, 2F5, 4E10).
McCoy2015
(neutralization)
-
PGT127: Vectored Immuno Prophylaxis (VIP), involves passive immunization by viral vector-mediated delivery of genes encoding bnAbs for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing Abs. This review article surveyed the status of antibody gene transfer, VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.
Yang2014
(immunoprophylaxis, review, antibody gene transfer)
-
PGT127: Computational prediction of bNAb epitopes from experimental neutralization activity data is presented. The approach relies on compressed sensing (CS) and mutual information (MI) methodologies and requires the sequences of the viral strains but does not require structural information. For PGT127, CS predicted 18 and MI predicted 2 positions, overlapping in positions 332, 334.
Ferguson2013
(computational epitope prediction, broad neutralizer)
-
PGT127: Diversity of Ab recognition at the N332 site was assessed using chimeric antibodies made of heavy and light chains of N332-directed bNAbs PGT121-137. Recognition was good when heavy and light chains came from the same donor, and poor when they came from different donors, indicating multiple modes of recognition.
Pancera2013a
(chimeric antibody)
-
PGT127: This study uncovered a potentially significant contribution of VH replacement products which are highly enriched in IgH genes for the generation of anti-HIV Abs including anti-gp41, anti-V3 loop, anti-gp120, CD4i and PGT Abs. IgH encoding PGT Abs are likely generated from multiple rounds of VH replacements. The details of PGT127 VH replacement products in IgH gene and mutations and amino acid sequence analysis are described in Table 1, Table 2 and Fig 4.
Liao2013a
(antibody sequence)
-
PGT127: Identification of broadly neutralizing antibodies, their epitopes on the HIV-1 spike, the molecular basis for their remarkable breadth, and the B cell ontogenies of their generation and maturation are reviewed. Ontogeny and structure-based classification is presented, based on MAb binding site, type (structural mode of recognition), class (related ontogenies in separate donors) and family (clonal lineage). This MAb's classification: gp120 glycan-V3 site, type penetrating CDR H3 binds two glycans and strand, PGT128 class, PGT128 family.
Kwong2012
(review, structure, broad neutralizer)
-
PGT127: This review discusses how analysis of infection and vaccine candidate-induced antibodies and their genes may guide vaccine design. This MAb is listed as V3 epitope involving carbohydrates bnAb, isolated after 2009 by neutralization screening of cultured, unselected IgG+ memory B cells.
Bonsignori2012b
(vaccine antigen design, vaccine-induced immune responses, review)
-
PGT127: Glycan shield of HIV Env protein helps to escape the Ab recognition. Several of the PGT BnAbs interact directly with the HIV glycan coat. Crystal structures of Fabs PGT127 and PGT128 showed that the high neutralizing potency was mediated by cross-linking Env trimers on the viral surface. PGT127 binds to Man8/9 glycans on gp120 and potently neutralize across the clades.
Pejchal2011
(glycosylation, structure, broad neutralizer)
-
PGT127: Glycan Asn332-targeting broadly cross-neutralizing (BCN) antibodies were studied in 2 C-clade infected women. The ASn332 glycan was absent on infecting virus, but the BCN epitope with Asn332 evolved within 6 months though immune escape from earlier antibodies. Plasma from the subject CAP177 neutralized 88% of a large multi-subtype panel of 225 heterologous viruses, whereas CAP 314 neutralized 46% of 41 heterologous viruses but failed to neutralize viruses that lack glycan at 332. Crystal structure revealed that PGT127 penetrates the glycan shield and target high mannose glycans at 302 and 332 to neutralize.
Moore2012
(neutralization, escape, structure)
-
PGT127: Neutralizing antibody repertoires of 4 HIV-infected donors with remarkably broad and potent neutralizing responses were probed. 17 new monoclonal antibodies that neutralize broadly across clades were rescued. These MAbs were not polyreactive. All MAbs exhibited broad cross-clade neutralizing activity, but several showed exceptional potency. PGT127 neutralized 50% of 162 isolates from major HIV clades at IC50<50 μg/ml, which was lower than 93% by VRC01, but the median antibody concentration required to inhibit HIV activity by 50% or 90% (IC50 and IC90 values) was almost 10-fold lower (that is, more potent) that of PG9, VRC01 and PGV04, and 100-fold lower than that of b12, 2G12 and 4E10. PGT MAbs 121-123, 130, 131 and 135-137 bound to monomeric gp120 and competed with glycan-specific 2G12 MAb and all MAbs except PGT 135-137 also competed with a V3-loop-specific antibody and did not bind to gp120ΔV3, suggesting that their epitopes are in proximity to or contiguous with V3. Glycan array analysis revealed that PGT MAbs 125–128 and 130 bound specifically to both Man8GlcNAc2 and Man9GlcNAc2, whereas the remaining antibodies showed no detectable binding to high-mannose glycans. Alanine substitution analysis suggested that N-linked glycans at positions 332 and/or 301 were important for neutralization by PGT MAbs 125–128, 130 and 131, suggesting their direct involvement in epitope formation.
Walker2011
(antibody binding site, antibody generation, variant cross-reactivity, broad neutralizer)
References
Showing 19 of
19 references.
Isolation Paper
Walker2011
Laura M. Walker, Michael Huber, Katie J. Doores, Emilia Falkowska, Robert Pejchal, Jean-Philippe Julien, Sheng-Kai Wang, Alejandra Ramos, Po-Ying Chan-Hui, Matthew Moyle, Jennifer L. Mitcham, Phillip W. Hammond, Ole A. Olsen, Pham Phung, Steven Fling, Chi-Huey Wong, Sanjay Phogat, Terri Wrin, Melissa D. Simek, Protocol G. Principal Investigators, Wayne C. Koff, Ian A. Wilson, Dennis R. Burton, and Pascal Poignard. Broad Neutralization Coverage of HIV by Multiple Highly Potent Antibodies. Nature, 477(7365):466-470, 22 Sep 2011. PubMed ID: 21849977.
Show all entries for this paper.
Bonsignori2012b
Mattia Bonsignori, S. Munir Alam, Hua-Xin Liao, Laurent Verkoczy, Georgia D. Tomaras, Barton F. Haynes, and M. Anthony Moody. HIV-1 Antibodies from Infection and Vaccination: Insights for Guiding Vaccine Design. Trends Microbiol., 20(11):532-539, Nov 2012. PubMed ID: 22981828.
Show all entries for this paper.
Evans2014
Mark C. Evans, Pham Phung, Agnes C. Paquet, Anvi Parikh, Christos J. Petropoulos, Terri Wrin, and Mojgan Haddad. Predicting HIV-1 Broadly Neutralizing Antibody Epitope Networks Using Neutralization Titers and a Novel Computational Method. BMC Bioinformatics, 15:77, 19 Mar 2014. PubMed ID: 24646213.
Show all entries for this paper.
Ferguson2013
Andrew L. Ferguson, Emilia Falkowska, Laura M. Walker, Michael S. Seaman, Dennis R. Burton, and Arup K. Chakraborty. Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data. PLoS One, 8(12):e80562, 2013. PubMed ID: 24312481.
Show all entries for this paper.
Krumm2016
Stefanie A. Krumm, Hajer Mohammed, Khoa M. Le, Max Crispin, Terri Wrin, Pascal Poignard, Dennis R. Burton, and Katie J. Doores. Mechanisms of Escape from the PGT128 Family of Anti-HIV Broadly Neutralizing Antibodies. Retrovirology, 13:8, 2 Feb 2016. PubMed ID: 26837192.
Show all entries for this paper.
Kwong2012
Peter D. Kwong and John R. Mascola. Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity, 37(3):412-425, 21 Sep 2012. PubMed ID: 22999947.
Show all entries for this paper.
Liao2013a
Hongyan Liao, Jun-tao Guo, Miles D. Lange, Run Fan, Michael Zemlin, Kaihong Su, Yongjun Guan, and Zhixin Zhang. Contribution of V(H) Replacement Products to the Generation of Anti-HIV Antibodies. Clin. Immunol., 146(1):46-55, Jan 2013. PubMed ID: 23220404.
Show all entries for this paper.
McCoy2015
Laura E. McCoy, Emilia Falkowska, Katie J. Doores, Khoa Le, Devin Sok, Marit J. van Gils, Zelda Euler, Judith A. Burger, Michael S. Seaman, Rogier W. Sanders, Hanneke Schuitemaker, Pascal Poignard, Terri Wrin, and Dennis R. Burton. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathog., 11(8):e1005110, Aug 2015. PubMed ID: 26267277.
Show all entries for this paper.
Moore2012
Penny L. Moore, Elin S. Gray, C. Kurt Wibmer, Jinal N. Bhiman, Molati Nonyane, Daniel J. Sheward, Tandile Hermanus, Shringkhala Bajimaya, Nancy L. Tumba, Melissa-Rose Abrahams, Bronwen E. Lambson, Nthabeleng Ranchobe, Lihua Ping, Nobubelo Ngandu, Quarraisha Abdool Karim, Salim S. Abdool Karim, Ronald I. Swanstrom, Michael S. Seaman, Carolyn Williamson, and Lynn Morris. Evolution of an HIV Glycan-Dependent Broadly Neutralizing Antibody Epitope through Immune Escape. Nat. Med., 18(11):1688-1692, Nov 2012. PubMed ID: 23086475.
Show all entries for this paper.
Pancera2013a
Marie Pancera, Yongping Yang, Mark K. Louder, Jason Gorman, Gabriel Lu, Jason S. McLellan, Jonathan Stuckey, Jiang Zhu, Dennis R. Burton, Wayne C. Koff, John R. Mascola, and Peter D. Kwong. N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function. PLoS One, 8(2):e55701, 2013. PubMed ID: 23431362.
Show all entries for this paper.
Pejchal2011
Robert Pejchal, Katie J. Doores, Laura M. Walker, Reza Khayat, Po-Ssu Huang, Sheng-Kai Wang, Robyn L. Stanfield, Jean-Philippe Julien, Alejandra Ramos, Max Crispin, Rafael Depetris, Umesh Katpally, Andre Marozsan, Albert Cupo, Sebastien Maloveste, Yan Liu, Ryan McBride, Yukishige Ito, Rogier W. Sanders, Cassandra Ogohara, James C. Paulson, Ten Feizi, Christopher N. Scanlan, Chi-Huey Wong, John P. Moore, William C. Olson, Andrew B. Ward, Pascal Poignard, William R. Schief, Dennis R. Burton, and Ian A. Wilson. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 334(6059):1097-1103, 25 Nov 2011. PubMed ID: 21998254.
Show all entries for this paper.
Sanders2013
Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931.
Show all entries for this paper.
Scheepers2015
Cathrine Scheepers, Ram K. Shrestha, Bronwen E. Lambson, Katherine J. L. Jackson, Imogen A. Wright, Dshanta Naicker, Mark Goosen, Leigh Berrie, Arshad Ismail, Nigel Garrett, Quarraisha Abdool Karim, Salim S. Abdool Karim, Penny L. Moore, Simon A. Travers, and Lynn Morris. Ability to Develop Broadly Neutralizing HIV-1 Antibodies Is Not Restricted by the Germline Ig Gene Repertoire. J. Immunol., 194(9):4371-4378, 1 May 2015. PubMed ID: 25825450.
Show all entries for this paper.
Sok2014a
Devin Sok, Katie J. Doores, Bryan Briney, Khoa M. Le, Karen L. Saye-Francisco, Alejandra Ramos, Daniel W. Kulp, Jean-Philippe Julien, Sergey Menis, Lalinda Wickramasinghe, Michael S. Seaman, William R. Schief, Ian A. Wilson, Pascal Poignard, and Dennis R. Burton. Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Sci. Transl. Med., 6(236):236ra63, 14 May 2014. PubMed ID: 24828077.
Show all entries for this paper.
Yang2014
Lili Yang and Pin Wang. Passive Immunization against HIV/AIDS by Antibody Gene Transfer. Viruses, 6(2):428-447, Feb 2014. PubMed ID: 24473340.
Show all entries for this paper.
Zhang2013
Yu Zhang, Tingting Yuan, Jingjing Li, Yanyu Zhang, Jianqing Xu, Yiming Shao, Zhiwei Chen, and Mei-Yun Zhang. The Potential of the Human Immune System to Develop Broadly Neutralizing HIV-1 Antibodies: Implications for Vaccine Development. AIDS, 27(16):2529-2539, 23 Oct 2013. PubMed ID: 24100711.
Show all entries for this paper.
Yu2018
Wen-Han Yu, Peng Zhao, Monia Draghi, Claudia Arevalo, Christina B. Karsten, Todd J. Suscovich, Bronwyn Gunn, Hendrik Streeck, Abraham L. Brass, Michael Tiemeyer, Michael Seaman, John R. Mascola, Lance Wells, Douglas A. Lauffenburger, and Galit Alter. Exploiting Glycan Topography for Computational Design of Env Glycoprotein Antigenicity. PLoS Comput. Biol., 14(4):e1006093, Apr 2018. PubMed ID: 29677181.
Show all entries for this paper.
Walker2018
Laura M. Walker and Dennis R. Burton. Passive Immunotherapy of Viral Infections: `Super-Antibodies' Enter the Fray. Nat. Rev. Immunol., 18(5):297-308, May 2018. PubMed ID: 29379211.
Show all entries for this paper.
Bricault2019
Christine A. Bricault, Karina Yusim, Michael S. Seaman, Hyejin Yoon, James Theiler, Elena E. Giorgi, Kshitij Wagh, Maxwell Theiler, Peter Hraber, Jennifer P. Macke, Edward F. Kreider, Gerald H. Learn, Beatrice H. Hahn, Johannes F. Scheid, James M. Kovacs, Jennifer L. Shields, Christy L. Lavine, Fadi Ghantous, Michael Rist, Madeleine G. Bayne, George H. Neubauer, Katherine McMahan, Hanqin Peng, Coraline Chéneau, Jennifer J. Jones, Jie Zeng, Christina Ochsenbauer, Joseph P. Nkolola, Kathryn E. Stephenson, Bing Chen, S. Gnanakaran, Mattia Bonsignori, LaTonya D. Williams, Barton F. Haynes, Nicole Doria-Rose, John R. Mascola, David C. Montefiori, Dan H. Barouch, and Bette Korber. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe, 25(1):59-72.e8, 9 Jan 2019. PubMed ID: 30629920.
Show all entries for this paper.