Found 1 matching record:
Displaying record number 1258
Download this epitope
record as JSON.
Notes
Showing 1 of
1 note.
-
Ag1211: Thermodynamics of binding to gp120 was measured using isothermal titration calorimetry for sCD4, 17b, b12, 48d, F105, 2G12 and C11 to intact YU2 and the HXBc2 core. The free energy of binding was similar, and not only CD4 but MAb ligands induced thermodynamic changes in gp120 that were independent of whether the core or the full gp120 protein was used. Non-neutralizing CD4BS and CD4i MAbs had large entropy contributions to free energy (mean: 26.1 kcal/mol) of binding to the gp120 monomer, except the potent CD4BS neutralizing MAb b6 had a much smaller value of 5.7 kcal/mol. High values suggest surface burial or protein folding and ordering of amino acids. Variable loop MAbs (L17, L78, 19b, 39F, Ag1211, D0142, and G3-2999) MAbs that bind to the N and C termini (211/c, A32, L100, P35, and C11) do not have dramatic entropy changes. These results suggest that while the trimeric Env complex has four surfaces, a non-neutralizing face (occluded on the oligomer), a variable face, a neutralizing face and a silent face (protected by carbohydrate masking), gp120 monomers further protect receptor binding sites by conformational or entropic masking, requiring a large energy handicap for Ab binding not faced by other anti-gp120 Abs.
Kwong2002
(antibody binding site)
References
Showing 1 of
1 reference.
Kwong2002
Peter D. Kwong, Michael L. Doyle, David J. Casper, Claudia Cicala, Stephanie A. Leavitt, Shahzad Majeed, Tavis D. Steenbeke, Miro Venturi, Irwin Chaiken, Michael Fung, Hermann Katinger, Paul W. I. H. Parren, James Robinson, Donald Van Ryk, Liping Wang, Dennis R. Burton, Ernesto Freire, Richard Wyatt, Joseph Sodroski, Wayne A. Hendrickson, and James Arthos. HIV-1 Evades Antibody-Mediated Neutralization through Conformational Masking of Receptor-Binding Sites. Nature, 420(6916):678-682, 12 Dec 2002. Comment in Nature. 2002 Dec 12;420(6916):623-4. PubMed ID: 12478295.
Show all entries for this paper.