Found 1 matching record:
Displaying record number 1130
Download this epitope
record as JSON.
MAb ID |
7B2 |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
gp41 |
Research Contact |
James Robinson |
Epitope |
|
Ab Type |
gp41 cluster I |
Neutralizing |
|
Species
(Isotype)
|
human |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
ADCC, antibody binding site, antibody interactions, assay or method development, binding affinity, genital and mucosal immunity, glycosylation, HAART, ART, immunoprophylaxis, neutralization, SIV, structure, vaccine antigen design, vaccine-induced immune responses |
Notes
Showing 36 of
36 notes.
-
7B2: An elite HIV-controlling patient SA003 was found to have a high level of serum bNAb activity, and broadly neutralizing mAb LN01 IgG3 was isolated from patient serum. MAb 7B2 was used as a comparison in an assay of epitope specificity and binding (Fig. S4).
Pinto2019
(antibody binding site)
-
7B2: The influence of a V2 State 2/3-stabilizing Env mutation, L193A, on ADCC responses mediated by sera from HIV-1-infected individuals was evaluated. Conformations spontaneously sampled by the Env trimer at the surface of infected cells had a significant impact on ADCC. 7B2 recognized L193A variants of CH58 and CH77 IMCs with a significant increase compared to the WT.
Prevost2018
(ADCC)
-
7B2: The first cryo-EM structure of a cross-linked vaccine antigen was solved. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a bNAb PGV04 Fab fragment revealed how cross-linking affects key properties of the trimer. SOSIP and GLA-SOSIP trimers were compared for antigenicity by ELISA, using a large panel of mAbs previously determined to react with BG505 Env. Non-NAbs like 7B2 globally lost reactivity (7-fold median loss of binding), likely because of covalent stabilization of the cross-linked ‘closed’ form of the GLA-SOSIP trimer that binds non-NAbs weakly or not at all. V3-specific non-NAbs showed 2.1–3.3-fold reduced binding. Three autologous rabbit monoclonal NAbs to the N241/N289 ‘glycan-hole’ surface, showed a median ˜1.5-fold reduction in binding. V3 non-NAb 4025 showed residual binding to the GLA-SOSIP trimer. By contrast, bNAbs broadly retained reactivity significantly better than non-NAbs, with exception of PGT145 (3.3-5.3 fold loss of binding in ELISA and SPR).
Schiffner2018
(vaccine antigen design, binding affinity, structure)
-
7B2: A significant fraction of splenic B cells from BALB/c mice was shown to bind a MPER peptide that included the 2F5 epitope. The binding was concentrated in IgM subsets. However, IgM interactions with MPER peptide included residues distinct from those involved in 2F5 binding, indicating that low avidity, non-paratopic interactions between MPER and B cells may interfere with or divert 2F5 bNAb responses. 7B2 had positive binding to some various HIV-1 Env-specific B cell tetramers.
Verkoczy2009
(binding affinity)
-
7b2: Three strategies were applied to perturb the structure of Env in order to make the protein more susceptible to neutralization: exposure to cold, Env-activating ligands, and a chaotropic agent. A panel of mAbs (E51, 48d, 17b, 3BNC176, 19b, 447-52D, 39F, b12, b6, PG16, PGT145, PGT126, 35O22, F240, 10E8, 7b2, 2G12) was used to test the neutralization resistance of a panel of subtype B and C pseudoviruses with and without these agents. Both cold and CD4 mimicking agents (CD4Ms) increased the sensitivity of some viruses. The chaotropic agent urea had little effect by itself, but could enhance the effects of cold or CD4Ms. Thus Env destabilizing agents can make Env more susceptible to neutralization and may hold promise as priming vaccine antigens.
Johnson2017
(vaccine antigen design)
-
7B2: The results confirm that Nef and Vpu protect HIV-1-infected cells from ADCC, but also show that not all classes of antibody can mediate ADCC. Anti-cluster-A antibodies are able to mediate potent ADCC responses, whereas anti-coreceptor binding site antibodies are not. Position 69 in gp120 is important for antibody-mediated cellular toxicity by anti-cluster-A antibodies. The angle of approach of a given class of antibodies could impact its capacity to mediate ADCC. F240, N5-U1, N5-U3, N10-U1, M785-U1, and 7B2 were selected Abs that recognize gp41. Ab 7B2 had a very low level of ADCC activity against 2 strains tested.
Ding2015
(ADCC)
-
7B2: The ability of neutralizing and nonneutralizing mAbs to block infection in models of mucosal transmission was tested. Neutralization potency did not fully predict activity in mucosal tissue. CD4bs-specific bNAbs, in particular VRC01, blocked HIV-1 infection across all cellular and tissue models. MPER (2F5) and outer domain glycan (2G12) bNAbs were also efficient in preventing infection of mucosal tissues, while bNAbs targeting V1-V2 glycans (PG9 and PG16) were more variable. Non-nAbs alone and in combinations, were poorly protective against mucosal infection. The protection provided by specific bNAbs demonstrates their potential over that of nonneutralizing antibodies for preventing mucosal entry. Three non-nAb combinations were assayed: 7B2/CH58/CH90, 7B2/CH58/CH22, and F240/M785-U1/N10-U1; A32, 7B2, CH90, and CH22 contained the AAA mutations (S298A, E333A, and K334A) optimized for binding to Fc RIIIa (CD16) and to augment antibody ADCC activity.
Cheeseman2017
(genital and mucosal immunity, immunoprophylaxis)
-
7b2: Protection by mAbs was tested in two models of mucosal HIV-1 transmission. Broadly neutralizing Abs (CH31, b12), but not non-neutralizing Abs (CH29, CH38, CH54, CH57, CH90, CH58, HG129, HG130, 7b2, CH65) were able to block HIV infection in human vaginal explants. Infusion of CH31, but not CH54 or CH38, protected rhesus macaques against SHIV challenge.
Astronomo2016
(immunoprophylaxis)
-
7B2: This study investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit NAbs. Rabbits were immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). N197 glycan- and residue 230- removal conferred sensitivity to Trimer VLP sera and DNA trimer sera respectively, showing for the first time that strain-specific holes in the "glycan fence" can allow the development of tier 2 NAbs to native spikes. All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. 7B2 was used in an antibody cocktail to analyze BN-PAGE “shift” assays to measure the ability of Abs to bind and deplete the unliganded trimer.
Crooks2015
(glycosylation, neutralization)
-
7B2: In a passive antibody infusion-rhesus macaque challenge model, non-neutralizing mAbs were seen to limit virus acquisition and infection. 7B2, which recognizes both virus particles and infected cells as well as A32, recognizing only infected cells, together were able to decrease transmitted/founder viruses in in vivo rectal mucosal high-dose transmission of SHIV-BaL by 50% though they did not prevent infection or reduce viral load. 7B2 Fab x-ray crystal structure with the gp41596-606 cyclical loop motif was also presented, showing the importance of the disulfide bond between C598, C604 and that binding to the immunodominant loop does not occur to pre-fusion Env spikes but to infected cells and Env stumps or post-fusion structures.
Santra2015
(genital and mucosal immunity, SIV, structure)
-
7b2: Two stable homogenous gp140 Env trimer spikes, Clade A 92UG037.8 Env and Clade C C97ZA012 Env, were identified. 293T cells stably transfected with either presented fully functional surface timers, 50% of which were uncleaved. A panel of neutralizing and non-neutralizing Abs were tested for binding to the trimers. Non-neutralizing Cluster I Ab, 7b2 did not bind cell surface or neutralize 92UG037.8 HIV-1 isolate though it did bind gp160 minus its C-terminus (gp160ΔCT) weakly, and was able to bind well in the presence of sCD4.
Chen2015
(neutralization, binding affinity)
-
7B2: A new trimeric immunogen, BG505 SOSIP.664 gp140, was developed that bound and activated most known neutralizing antibodies but generally did not bind antibodies lacking neuralizing activity. This highly stable immunogen mimics the Env spike of subtype A transmitted/founder (T/F) HIV-1 strain, BG505. Anti-gp41 non-NAb 7B2 did not neutralize BG505.T332N, the pseudoviral equivalent of the immunogen BG505 SOSIP.664 gp140, and did not recognize or bind the immunogen either.
Sanders2013
(assay or method development, neutralization, binding affinity)
-
7B2: Galactosyl ceramide (Galcer), a glycosphingolipid, is a receptor for the HIV-1 Env glycoprotein. This study has mimicked this interaction by using an artificial membrane containing synthetic Galcer and recombinant HIV-1 Env proteins to identify antibodies that would block the HIV-1 Env-Galcer interaction. HIV-1 ALVAC/AIDSVAX vaccinee-derived MAbs specific for the gp120 C1 region blocked Galcer binding of a transmitted/founder HIV-1 Env gp140. The antibody-dependent cellular cytotoxicity-mediating CH38 IgG and its natural IgA isotype were the most potent blocking antibodies.7B2 did not block Env-Galcer binding.
Dennison2014
(ADCC, antibody binding site, antibody interactions, glycosylation)
-
7B2: The infectious virion (iVirions) capture index (IVCI) of different Abs have been determined. bnAbs captured higher proportions of iVirions compared to total virus particles (rVirions) indicating the capacity, breadth and selectively of bnAbs to capture iVirions. IVCI was additive with a mixture of Abs, providing proof of concept for vaccine-induced effect of improved capacity. Non-neutralizing MAb 7B2 captured more than 20% noninfectious rVirions with IVCI 0.8. 7B2 and CH58 combined at a 1:1 ratio significantly captured more virions than each alone.
Liu2014
(antibody interactions, binding affinity)
-
7B2: PGT151 family epitope has been identified and structurally defined. GT151 family MAbs bind to a new site of vulnerability that does not overlap with any other bnAb epitopes. 7B2 wwas used as an anti-gp41 mAb to compare its binding with other PGT151 family Abs.
Blattner2014
-
7B2: Plasma IgA and monomeric IgA monoclonal antibodies from RV144 vaccine recipients were examined to test the hypothesis that some fraction of the vaccine-elicited IgA response could block IgG-mediated ADCC function. 7B2 was used as the negative control in the analysis.
Tomaras2013
(vaccine-induced immune responses)
-
7B2: This paper reported the nature of junk Env glycan that undermine the development of Ab responses against gp120/gp41 trimers and evaluated enzyme digestion as a way to remove aberrant Env to produce "trimer VLPs". 7B2 was used in the anti-gp41 Ab cocktail in SDS-PAGE and western blot experiments to prove that enzymes removed junk Env from VLPs and inactivated virus.
Crooks2011
(glycosylation)
-
7B2 Database comments: 7B2 is frequently used as a positive control non-neutralizing anti-gp41. Papers cite it to Binley2000, although this paper doesn't describe its derivation. 7B2 is a CHAVI reagent (http://chavi.org/); Species: human; Category: gp41 MAbs; Contact person: James Robinson
-
7B2: Intrinsic reactivity of HIV-1, a new property regulating the level of both entry and sensitivity to Abs has been reported. This activity dictates the level of responsiveness of Env protein to co-receptor, CD4 engagement and Abs. 7B2 was used as a control anti-gp41 Ab.
Haim2011
(antibody interactions)
-
7B2: The goal of this study was to improve the humoral response to HIV-1 by targeting trimeric Env gp140 to B cells. The gp140 was fused to a proliferation-inducing ligand (APRIL), B cell activation factor (BAFF) and CD40 ligand (CD40L). These fusion proteins increased the expression of activation-induced-cytidine deaminase (AID) responsible for somatic hypermutation, Ab affinity maturation, and Ab class switching. The Env-APRIL induced high anti-Env responses against tier1 viruses. 7B2 was used in BN-PAGE trimer shift assay.
Melchers2012
(neutralization)
-
7B2: Antigenic properties of undigested VLPs and endo H-digested WT trimer VLPs were compared. Binding of 7B2 to WT VLPs is consistent with the recognition of nonfunctional Env. 7B2 did not neutralize trimer VLPs. BN-PAGE shifts using digested E168K + N189A WT trimer VLPs exhibited prominence compared to WT VLPs.
Tong2012
(neutralization, binding affinity)
-
7B2: Circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of acute subjects were quantified, and the levels and antibody specificity to those in chronic infection were compared. Similar to a nonneutralizing anti-gp41 MAb 7B2, purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions.
Liu2011c
(binding affinity)
-
7B2: A monostratified epithelium using HT-29 cells transduced to express CCR5 was constructed to model the transcytosis of HIV-1 across columnar epithelial cells because CCR5-tropic viruses are the dominant viruses transmitted in vivo and are preferentially transcytosed across intestinal epithelial cells in vitro. 7B2 inhibited the transcytosis of NL4-3.Balecto by 57 percent.
Shen2010a
(binding affinity)
-
7B2: The two distinct and conflicting models of C-terminal tail (CTT) topology for HIV-1 gp41 were tested by characterizing the accessibility of KE (Kennedy epitope) sequences of gp41 to Ab binding on the surface of Env-expressing cells and intact mature virions. 7B2 binds effectively to KE in the context of intact virions.
Steckbeck2010
(binding affinity)
-
7B2: Unlike the MPER MAbs tested, 7B2 did not show any Env-independent virus capture in the conventional or in the modified version of the virus capture assay. There was an overall reduction in the efficiency of capture of molecular clones (MC) relative to pseudotyped virions by 7B2. In addition, nontrimeric Envs from JR-CSF MC virus were more efficiently captured by 7B2 than trimeric JR-FL. It was also shown that soluble Env and MPER peptides can associate with Env-deficient particles and mediate 7B2-specific virion capture.
Leaman2010
-
7B2: A highly efficient strategy for rapid expression of Ig genes was designed by combining isolation of Ig Vh and Vl genes from single cells, with novel linear Ig gene expression cassettes. The method was used to produce 7B2 from Vh and Vl genes derived from cloned EBV-transformed B-cell lines. The produced 7B2 Abs performed like 7B2 derived from EBV-transformed B-cell lines, reacting with gp41.
Liao2009
(assay or method development)
-
7B2: Sera from rabbits immunized with subtype A SOSIP gp140 trimers was used in virus competition assay. 7B2 was able to capture the virus effectively.
Kang2009
-
7B2: Ten new non-neutralizing, cross-reactive mAbs were found in immunized mice. 7B2 was able to capture SF162 or BG1168 pseudovirus particles, while the newly detected mAbs could not bind free virions. Positive control V3 mAb F39F and gp41 mAb 4E10 and 7B2 were used to assess the activity of gp140 proteins following immobilization.
Gao2009
-
7B2: Sera from both gp120 DNA prime-protein boost immunized rabbits and from protein-only immunized rabbits did not compete for binding to 7B2, indicating no elicitation of 7B2-like Abs by either of the immunization regimens.
Vaine2008
(vaccine antigen design)
-
7B2: 7B2 was shown to bind to Envs used in typical epitope binding assays, unlike the neutralizing Abs 8K8, DN9, and D5 used in this study.
Nelson2008
-
7B2: Most of the sera from guinea pigs immunized with gp120 protein or with three types of VLPs containing disulfide-shackled functional trimers (SOS-VLP), uncleaved nonfunctional Env (UNC-VLP), and naked VLP bearing no Env, weakly or ineffectively inhibited 7B2. HIV-1+ plasma strongly inhibited this Ab, and high inhibition was also found in three of the VLP-sera.
Crooks2007
(neutralization)
-
7B2: A reverse capture assay was developed to assess what kind of human MAbs were produced in EBV B-cell transformation assays performed on PBMC sampled at different time-points from three HIV-1 infected patients on HAART. The reverse capture assay was validated by the solid phase MAbs that could not capture biotin-MAbs of the same or overlapping specificity when reacted with patient virus envelope glycoproteins preincubated with or without sCD4. Detection of gp41 Abs in the assay was based on the fact that they would capture cleaved gp41 and thus be detected by binding to biotin-labeled gp41 Abs recognizing non-competing sites. Reverse capture assay showed that the produced Abs from the patients were detected by biotin-labeled 7B2 in a mixture with 2.2B, indicating presence of gp41 Abs.
Robinson2005
(assay or method development, HAART, ART)
-
7B2: In addition to gp120-gp41 trimers, HIV-1 particles were shown to bear nonfunctional gp120-gp41 monomers and gp120-depleted gp41 stumps on their surface. 7B2 recognizes trimeric and monomeric gp41 stumps. Thus, it did not neutralize wildype virus particles but it could capture virus efficiently. It is hypothesized that the nonfunctional monomers on the HIV-1 surface serve to divert the Ab response, helping the virus to avoid neutralization.
Moore2006
(antibody binding site, neutralization)
-
7B2: Of 35 Env-specific MAbs tested, only 2F5, 4E10, IgG1b12, and two CD4BS adjacent MAbs (A32 and 1.4G) and gp41 MAbs (2.2B and KU32) had binding patterns suggesting polyspecific autoreactivity, and similar reactivities may be difficult to induce with vaccines because of elimination of such autoreactivity. 7B2 has no indication of polyspecific autoreactivity.
Haynes2005
(antibody binding site)
-
7B2: The SOS mutant envelope protein introduces a covalent disulfide bond between gp120 surface and gp41 transmembrane proteins into the R5 isolate JR-FL by adding cysteines at residues 501 and 605. Pseudovirions bearing this protein bind to CD4 and co-receptor bearing cells, but do not fuse until treatment with a reducing agent, and are arrested prior to fusion after CD4 and co-receptor engagement. gp41 Abs 7B2 and 2.2B did not neutralize in any format, WT, SOS, nor when added postbinding.
Binley2003
(vaccine antigen design)
-
7B2: The MAbs with the broadest neutralizing activity, IgG1b12, 2G12 and 2F5, all have high affinity for the native trimer, indicating that they were raised in an immune response to the oligomer on the virion surface rather than dissociated subunits -- a disulfide linked gp120-gp41 (SOS gp140) was created to mimic the native conformation of Env and explore its potential as an immunogen -- SOS gp140 is recognized by NAbs IgG1b12, 2G12, and CD4-IgG2, and also by anti-V3 MAbs 19b and 83.1 -- SOSgp140 is not recognized by C4 region MAbs that neutralize only TCLA strains, G3-42 and G3-519 -- nor did it bind C11, 23A, and M90, MAbs that bind to gp120 C1 and C5, where it interacts with gp41 -- MAbs that bind CD4 inducible epitopes, 17b and A32 were very strongly induced by CD4 in SOS gp140 -- anti-gp41 MAbs that bind in the region that interacts with gp120, 7B2, 2.2B, T4, T15G1 and 4D4, did not bind to SOSgp140, in contrast to 2F5, which binds to the only gp41 epitope that is well exposed in native gp120-gp41 complexes.
Binley2000
(antibody binding site)
References
Showing 35 of
35 references.
Astronomo2016
Rena D. Astronomo, Sampa Santra, Lamar Ballweber-Fleming, Katharine G. Westerberg, Linh Mach, Tiffany Hensley-McBain, Laura Sutherland, Benjamin Mildenberg, Georgeanna Morton, Nicole L. Yates, Gregory J. Mize, Justin Pollara, Florian Hladik, Christina Ochsenbauer, Thomas N. Denny, Ranjit Warrier, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayapan, Jaranit Kaewkungwal, Guido Ferrari, George M. Shaw, Shi-Mao Xia, Hua-Xin Liao, David C. Montefiori, Georgia D. Tomaras, Barton F. Haynes, and Juliana M. McElrath. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 14:97-111, Dec 2016. PubMed ID: 27919754.
Show all entries for this paper.
Binley2000
J. Binley, R. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. Anselma, P. Maddon, W. Olson, and J. Moore. A Recombinant Human Immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intramolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion associated structure. J. Virol., 74:627-43, 1999. PubMed ID: 10623724.
Show all entries for this paper.
Binley2003
James M. Binley, Charmagne S. Cayanan, Cheryl Wiley, Norbert Schülke, William C. Olson, and Dennis R. Burton. Redox-Triggered Infection by Disulfide-Shackled Human Immunodeficiency Virus Type 1 Pseudovirions. J. Virol., 77(10):5678-5684, May 2003. PubMed ID: 12719560.
Show all entries for this paper.
Blattner2014
Claudia Blattner, Jeong Hyun Lee, Kwinten Sliepen, Ronald Derking, Emilia Falkowska, Alba Torrents de la Peña, Albert Cupo, Jean-Philippe Julien, Marit van Gils, Peter S. Lee, Wenjie Peng, James C. Paulson, Pascal Poignard, Dennis R. Burton, John P. Moore, Rogier W. Sanders, Ian A. Wilson, and Andrew B. Ward. Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 40(5):669-680, 15 May 2014. PubMed ID: 24768348.
Show all entries for this paper.
Cheeseman2017
Hannah M. Cheeseman, Natalia J. Olejniczak, Paul M. Rogers, Abbey B. Evans, Deborah F. L. King, Paul Ziprin, Hua-Xin Liao, Barton F. Haynes, and Robin J. Shattock. Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. J. Virol., 91(1), 1 Jan 2017. PubMed ID: 27795431.
Show all entries for this paper.
Chen2015
Jia Chen, James M. Kovacs, Hanqin Peng, Sophia Rits-Volloch, Jianming Lu, Donghyun Park, Elise Zablowsky, Michael S. Seaman, and Bing Chen. Effect of the Cytoplasmic Domain on Antigenic Characteristics of HIV-1 Envelope Glycoprotein. Science, 349(6244):191-195, 10 Jul 2015. PubMed ID: 26113642.
Show all entries for this paper.
Crooks2007
Emma T. Crooks, Penny L. Moore, Michael Franti, Charmagne S. Cayanan, Ping Zhu, Pengfei Jiang, Robbert P. de Vries, Cheryl Wiley, Irina Zharkikh, Norbert Schülke, Kenneth H. Roux, David C. Montefiori, Dennis R. Burton, and James M. Binley. A Comparative Immunogenicity Study of HIV-1 Virus-Like Particles Bearing Various Forms of Envelope Proteins, Particles Bearing no Envelope and Soluble Monomeric gp120. Virology, 366(2):245-262, 30 Sep 2007. PubMed ID: 17580087.
Show all entries for this paper.
Crooks2011
Ema T. Crooks, Tommy Tong, Keiko Osawa, and James M. Binley. Enzyme Digests Eliminate Nonfunctional Env from HIV-1 Particle Surfaces, Leaving Native Env Trimers Intact and Viral Infectivity Unaffected. J. Virol., 85(12):5825-5839, Jun 2011. PubMed ID: 21471242.
Show all entries for this paper.
Crooks2015
Ema T. Crooks, Tommy Tong, Bimal Chakrabarti, Kristin Narayan, Ivelin S. Georgiev, Sergey Menis, Xiaoxing Huang, Daniel Kulp, Keiko Osawa, Janelle Muranaka, Guillaume Stewart-Jones, Joanne Destefano, Sijy O'Dell, Celia LaBranche, James E. Robinson, David C. Montefiori, Krisha McKee, Sean X. Du, Nicole Doria-Rose, Peter D. Kwong, John R. Mascola, Ping Zhu, William R. Schief, Richard T. Wyatt, Robert G. Whalen, and James M. Binley. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog, 11(5):e1004932, May 2015. PubMed ID: 26023780.
Show all entries for this paper.
Dennison2014
S. Moses Dennison, Kara M. Anasti, Frederick H. Jaeger, Shelley M. Stewart, Justin Pollara, Pinghuang Liu, Erika L. Kunz, Ruijun Zhang, Nathan Vandergrift, Sallie Permar, Guido Ferrari, Georgia D. Tomaras, Mattia Bonsignori, Nelson L. Michael, Jerome H Kim, Jaranit Kaewkungwal, Sorachai Nitayaphan, Punnee Pitisuttithum, Supachai Rerks-Ngarm, Hua-Xin Liao, Barton F. Haynes, and S. Munir Alam. Vaccine-Induced HIV-1 Envelope gp120 Constant Region 1-Specific Antibodies Expose a CD4-Inducible Epitope and Block the Interaction of HIV-1 gp140 with Galactosylceramide. J. Virol., 88(16):9406-9417, Aug 2014. PubMed ID: 24920809.
Show all entries for this paper.
Ding2015
Shilei Ding, Maxime Veillette, Mathieu Coutu, Jérémie Prévost, Louise Scharf, Pamela J. Bjorkman, Guido Ferrari, James E. Robinson, Christina Stürzel, Beatrice H. Hahn, Daniel Sauter, Frank Kirchhoff, George K. Lewis, Marzena Pazgier, and Andrés Finzi. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. J. Virol., 90(4):2127-2134, Feb 2016. PubMed ID: 26637462.
Show all entries for this paper.
Gao2009
Feng Gao, Richard M. Scearce, S. Munir Alam, Bhavna Hora, Shimao Xia, Julie E. Hohm, Robert J. Parks, Damon F. Ogburn, Georgia D. Tomaras, Emily Park, Woodrow E. Lomas, Vernon C. Maino, Susan A. Fiscus, Myron S. Cohen, M. Anthony Moody, Beatrice H. Hahn, Bette T. Korber, Hua-Xin Liao, and Barton F. Haynes. Cross-reactive Monoclonal Antibodies to Multiple HIV-1 Subtype and SIVcpz Envelope Glycoproteins. Virology, 394(1):91-98, 10 Nov 2009. PubMed ID: 19744690.
Show all entries for this paper.
Haim2011
Hillel Haim, Bettina Strack, Aemro Kassa, Navid Madani, Liping Wang, Joel R. Courter, Amy Princiotto, Kathleen McGee, Beatriz Pacheco, Michael S. Seaman, Amos B. Smith, 3rd., and Joseph Sodroski. Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity. PLoS Pathog., 7(6):e1002101, Jun 2011. PubMed ID: 21731494.
Show all entries for this paper.
Haynes2005
Barton F. Haynes, Judith Fleming, E. William St. Clair, Herman Katinger, Gabriela Stiegler, Renate Kunert, James Robinson, Richard M. Scearce, Kelly Plonk, Herman F. Staats, Thomas L. Ortel, Hua-Xin Liao, and S. Munir Alam. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 308(5730):1906-1908, 24 Jun 2005. Comment in Science 2005 Jun 24;308(5730):1878-9. PubMed ID: 15860590.
Show all entries for this paper.
Johnson2017
Jacklyn Johnson, Yinjie Zhai, Hamid Salimi, Nicole Espy, Noah Eichelberger, Orlando DeLeon, Yunxia O'Malley, Joel Courter, Amos B. Smith, III, Navid Madani, Joseph Sodroski, and Hillel Haim. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J. Virol., 91(15), 1 Aug 2017. PubMed ID: 28490588.
Show all entries for this paper.
Kang2009
Yun Kenneth Kang, Sofija Andjelic, James M. Binley, Emma T. Crooks, Michael Franti, Sai Prasad N. Iyer, Gerald P. Donovan, Antu K. Dey, Ping Zhu, Kenneth H. Roux, Robert J. Durso, Thomas F. Parsons, Paul J. Maddon, John P. Moore, and William C. Olson. Structural and Immunogenicity Studies of a Cleaved, Stabilized Envelope Trimer Derived from Subtype A HIV-1. Vaccine, 27(37):5120-5132, 13 Aug 2009. PubMed ID: 19567243.
Show all entries for this paper.
Leaman2010
Daniel P. Leaman, Heather Kinkead, and Michael B. Zwick. In-Solution Virus Capture Assay Helps Deconstruct Heterogeneous Antibody Recognition of Human Immunodeficiency Virus Type 1. J. Virol., 84(7):3382-3395, Apr 2010. PubMed ID: 20089658.
Show all entries for this paper.
Liao2009
Hua-Xin Liao, Marc C. Levesque, Ashleigh Nagel, Ashlyn Dixon, Ruijun Zhang, Emmanuel Walter, Robert Parks, John Whitesides, Dawn J. Marshall, Kwan-Ki Hwang, Yi Yang, Xi Chen, Feng Gao, Supriya Munshaw, Thomas B. Kepler, Thomas Denny, M. Anthony Moody, and Barton F. Haynes. High-Throughput Isolation of Immunoglobulin Genes from Single Human B Cells and Expression as Monoclonal Antibodies. J. Virol. Methods, 158(1-2):171-179, Jun 2009. PubMed ID: 19428587.
Show all entries for this paper.
Liu2011c
Pinghuang Liu, R. Glenn Overman, Nicole L. Yates, S. Munir Alam, Nathan Vandergrift, Yue Chen, Frederik Graw, Stephanie A. Freel, John C. Kappes, Christina Ochsenbauer, David C. Montefiori, Feng Gao, Alan S. Perelson, Myron S. Cohen, Barton F. Haynes, and Georgia D. Tomaras. Dynamic Antibody Specificities and Virion Concentrations in Circulating Immune Complexes in Acute to Chronic HIV-1 Infection. J. Virol., 85(21):11196-11207, Nov 2011. PubMed ID: 21865397.
Show all entries for this paper.
Liu2014
Pinghuang Liu, Latonya D. Williams, Xiaoying Shen, Mattia Bonsignori, Nathan A. Vandergrift, R. Glenn Overman, M. Anthony Moody, Hua-Xin Liao, Daniel J. Stieh, Kerrie L. McCotter, Audrey L. French, Thomas J. Hope, Robin Shattock, Barton F. Haynes, and Georgia D. Tomaras. Capacity for Infectious HIV-1 Virion Capture Differs by Envelope Antibody Specificity. J. Virol., 88(9):5165-5170, May 2014. PubMed ID: 24554654.
Show all entries for this paper.
Melchers2012
Mark Melchers, Ilja Bontjer, Tommy Tong, Nancy P. Y. Chung, Per Johan Klasse, Dirk Eggink, David C. Montefiori, Maurizio Gentile, Andrea Cerutti, William C. Olson, Ben Berkhout, James M. Binley, John P. Moore, and Rogier W. Sanders. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses. J. Virol., 86(5):2488-2500, Mar 2012. PubMed ID: 22205734.
Show all entries for this paper.
Moore2006
Penny L. Moore, Emma T. Crooks, Lauren Porter, Ping Zhu, Charmagne S. Cayanan, Henry Grise, Paul Corcoran, Michael B. Zwick, Michael Franti, Lynn Morris, Kenneth H. Roux, Dennis R. Burton, and James M. Binley. Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. J. Virol., 80(5):2515-2528, Mar 2006. PubMed ID: 16474158.
Show all entries for this paper.
Nelson2008
Josh D. Nelson, Heather Kinkead, Florence M. Brunel, Dan Leaman, Richard Jensen, John M. Louis, Toshiaki Maruyama, Carole A. Bewley, Katherine Bowdish, G. Marius Clore, Philip E. Dawson, Shana Frederickson, Rose G. Mage, Douglas D. Richman, Dennis R. Burton, and Michael B. Zwick. Antibody Elicited against the gp41 N-Heptad Repeat (NHR) Coiled-Coil Can Neutralize HIV-1 with Modest Potency but Non-Neutralizing Antibodies Also Bind to NHR Mimetics. Virology, 377(1):170-183, 20 Jul 2008. PubMed ID: 18499210.
Show all entries for this paper.
Pinto2019
Dora Pinto, Craig Fenwick, Christophe Caillat, Chiara Silacci, Serafima Guseva, Francois Dehez, Christophe Chipot, Sonia Barbieri, Andrea Minola, David Jarrossay, Georgia D. Tomaras, Xiaoying Shen, Agostino Riva, Maciej Tarkowski, Olivier Schwartz, Timothee Bruel, Jeremy Dufloo, Michael S. Seaman, David C. Montefiori, Antonio Lanzavecchia, Davide Corti, Giuseppe Pantaleo, and Winfried Weissenhorn. Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe, 26(5):623-637e8 doi, Nov 2019. PubMed ID: 31653484
Show all entries for this paper.
Prevost2018
Jérémie Prévost, Jonathan Richard, Shilei Ding, Beatriz Pacheco, Roxanne Charlebois, Beatrice H Hahn, Daniel E Kaufmann, and Andrés Finzi. Envelope Glycoproteins Sampling States 2/3 Are Susceptible to ADCC by Sera from HIV-1-Infected Individuals. Virology, 515:38-45, Feb 2018. PubMed ID: 29248757.
Show all entries for this paper.
Robinson2005
James E. Robinson, Debra Holton Elliott, Effie A. Martin, Kathryne Micken, and Eric S. Rosenberg. High Frequencies of Antibody Responses to CD4 Induced Epitopes in HIV Infected Patients Started on HAART during Acute Infection. Hum Antibodies, 14(3-4):115-121, 2005. PubMed ID: 16720981.
Show all entries for this paper.
Sanders2013
Rogier W. Sanders, Ronald Derking, Albert Cupo, Jean-Philippe Julien, Anila Yasmeen, Natalia de Val, Helen J. Kim, Claudia Blattner, Alba Torrents de la Peña, Jacob Korzun, Michael Golabek, Kevin de los Reyes, Thomas J. Ketas, Marit J. van Gils, C. Richter King, Ian A. Wilson, Andrew B. Ward, P. J. Klasse, and John P. Moore. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-Neutralizing Antibodies. PLoS Pathog., 9(9):e1003618, Sep 2013. PubMed ID: 24068931.
Show all entries for this paper.
Santra2015
Sampa Santra, Georgia D Tomaras, Ranjit Warrier, Nathan I. Nicely, Hua-Xin Liao, Justin Pollara, Pinghuang Liu, S. Munir Alam, Ruijun Zhang, Sarah L. Cocklin, Xiaoying Shen, Ryan Duffy, Shi-Mao Xia, Robert J. Schutte, Charles W. Pemble, IV, S. Moses Dennison, Hui Li, Andrew Chao, Kora Vidnovic, Abbey Evans, Katja Klein, Amit Kumar, James Robinson, Gary Landucci, Donald N. Forthal, David C. Montefiori, Jaranit Kaewkungwal, Sorachai Nitayaphan, Punnee Pitisuttithum, Supachai Rerks-Ngarm, Merlin L. Robb, Nelson L. Michael, Jerome H. Kim, Kelly A. Soderberg, Elena E. Giorgi, Lily Blair, Bette T. Korber, Christiane Moog, Robin J. Shattock, Norman L. Letvin, Joern E. Schmitz, M. A. Moody, Feng Gao, Guido Ferrari, George M. Shaw, and Barton F. Haynes. Human Non-Neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathog., 11(8):e1005042, Aug 2015. PubMed ID: 26237403.
Show all entries for this paper.
Schiffner2018
Torben Schiffner, Jesper Pallesen, Rebecca A. Russell, Jonathan Dodd, Natalia de Val, Celia C. LaBranche, David Montefiori, Georgia D. Tomaras, Xiaoying Shen, Scarlett L. Harris, Amin E. Moghaddam, Oleksandr Kalyuzhniy, Rogier W. Sanders, Laura E. McCoy, John P. Moore, Andrew B. Ward, and Quentin J. Sattentau. Structural and Immunologic Correlates of Chemically Stabilized HIV-1 Envelope Glycoproteins. PLoS Pathog., 14(5):e1006986, May 2018. PubMed ID: 29746590.
Show all entries for this paper.
Shen2010a
Ruizhong Shen, Ernesto R. Drelichman, Diane Bimczok, Christina Ochsenbauer, John C. Kappes, Jamie A. Cannon, Daniela Tudor, Morgane Bomsel, Lesley E. Smythies, and Phillip D. Smith. GP41-Specific Antibody Blocks Cell-Free HIV Type 1 Transcytosis through Human Rectal Mucosa and Model Colonic Epithelium. J. Immunol., 184(7):3648-3655, 1 Apr 2010. PubMed ID: 20208001.
Show all entries for this paper.
Steckbeck2010
Jonathan D. Steckbeck, Chengqun Sun, Timothy J. Sturgeon, and Ronald C. Montelaro. Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes. PLoS One, 5(12):e15261, 2010. PubMed ID: 21151874.
Show all entries for this paper.
Tomaras2013
Georgia D. Tomaras, Guido Ferrari, Xiaoying Shen, S. Munir Alam, Hua-Xin Liao, Justin Pollara, Mattia Bonsignori, M. Anthony Moody, Youyi Fong, Xi Chen, Brigid Poling, Cindo O. Nicholson, Ruijun Zhang, Xiaozhi Lu, Robert Parks, Jaranit Kaewkungwal, Sorachai Nitayaphan, Punnee Pitisuttithum, Supachai Rerks-Ngarm, Peter B. Gilbert, Jerome H. Kim, Nelson L. Michael, David C. Montefiori, and Barton F. Haynes. Vaccine-Induced Plasma IgA Specific for the C1 Region of the HIV-1 Envelope Blocks Binding and Effector Function of IgG. Proc. Natl. Acad. Sci. U.S.A., 110(22):9019-9024, 28 May 2013. PubMed ID: 23661056.
Show all entries for this paper.
Tong2012
Tommy Tong, Ema T. Crooks, Keiko Osawa, and James M. Binley. HIV-1 Virus-Like Particles Bearing Pure Env Trimers Expose Neutralizing Epitopes but Occlude Nonneutralizing Epitopes. J. Virol., 86(7):3574-3587, Apr 2012. PubMed ID: 22301141.
Show all entries for this paper.
Vaine2008
Michael Vaine, Shixia Wang, Emma T. Crooks, Pengfei Jiang, David C. Montefiori, James Binley, and Shan Lu. Improved Induction of Antibodies against Key Neutralizing Epitopes by Human Immunodeficiency Virus Type 1 gp120 DNA Prime-Protein Boost Vaccination Compared to gp120 Protein-Only Vaccination. J. Virol., 82(15):7369-7378, Aug 2008. PubMed ID: 18495775.
Show all entries for this paper.
Verkoczy2009
Laurent Verkoczy, M. Anthony Moody, T. Matt Holl, Hilary Bouton-Verville, Richard M. Scearce, Jennifer Hutchinson, S. Munir Alam, Garnett Kelsoe, and Barton F. Haynes. Functional, Non-Clonal IgMa-Restricted B Cell Receptor Interactions with the HIV-1 Envelope gp41 Membrane Proximal External Region. PLoS One, 4(10):e7215, 2009. PubMed ID: 19806186.
Show all entries for this paper.