Found 1 matching record:
Displaying record number 1092
Download this epitope
record as JSON.
MAb ID |
2191 |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
(gp120 JRCSF) |
Research Contact |
Susan Zolla-Pazner (Zollas01@mcrcr6.med.nyu) (NYU Med. Center) |
Epitope |
|
Subtype |
B |
Ab Type |
gp120 V3 // V3 glycan (V3g) |
Neutralizing |
P View neutralization details |
Species
(Isotype)
|
human(IgG1λ) |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody generation, antibody sequence, assay or method development, binding affinity, neutralization, review, structure, subtype comparisons, vaccine antigen design, variant cross-reactivity |
Notes
Showing 13 of
13 notes.
-
2191: This study analyzed the neutralization sensitivity of sequential HIV-1 primary isolates during their natural evolution in 5 subtype B and CRF02_AG HIV-1 infected drug naive individuals to 13 anti-HIV-1 MAbs (including this MAb) directed at epitopes in the V2, V3, CD4bd and carbohydrates. Patient viruses evolved to become more sensitive to neutralization by MAbs directed at epitopes at V2, V3 and CDbd, indicating that cross sectional studies are inadequate to define the neutralization spectrum of MAb neutralization with primary HIV-1 isolates.
Haldar2011
(neutralization)
-
2191: 2191 neutralizing activity was assessed against pseudoviruses expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infection. IC50 neutralization activity was also statistically assessed based on the area under the neutralization curves (AUC). 2191 was able to neutralize 7/57 viruses in U87-based assay and 16/41 viruses in TZM-based assay, including Tier 1 and Tier 2 viruses, viruses of subtypes B, C, D, AG, and viruses from both chronic and acute infections. AUC analysis revealed that 24/57 viruses in the U87-based assay, and 17/41 viruses in the TZM-based assay, were significantly neutralized by this Ab. Thus, the AUC method has the ability to detect low levels of neutralizing activity that otherwise may be missed.
Hioe2010
(assay or method development, neutralization, variant cross-reactivity)
-
2191: Two V3-scaffold immunogen constructs were designed and expressed using 3D structures of cholera toxin B (CTB), V3 in the gp120 context, and V3 bound to 447-52D MAb. The construct (V3-CTB) presenting the complete V3 was recognized by 2191 MAb and by the large majority of other MAbs (18/24), indicating correctly folded and exposed MAb epitopes. V3-CTB induced V3-binding Abs and Abs displaying cross-clade neutralizing activity in immunized rabbits. Short V3-CTB construct, presenting a V3 fragment in conformation observed in complex with 447-52D, was not recognized by 2191.
Totrov2010
(vaccine antigen design, binding affinity, structure)
-
2191: Ab specificities of a panel of HIV sera were systematically analyzed by selective adsorption with native gp120 and specific mutant variants. To test sera for presence of V3 neutralizing activity, V3 peptides were used. These peptides inhibited neutralization mediated by 2191. Sera with limited neutralizing activity were mapped to V3. In some of the broadly neutralizing sera, the gp120-directed neutralization was mapped to CD4bs. Some sera were positive for NAbs against coreceptor binding region. A subset of sera also contained NAbs directed against MPER.
Li2009c
(assay or method development)
-
2191: The Ig usage for variable heavy chain of this Ab was as follows: IGHV:1-f*01, IGHD:3-3, D-RF:2, IGHJ:5. There was a preferential usage of the VH5-51 gene segment for V3 Abs. The usage of the VH4 family for the V3 Abs was restricted to only one gene segment, VH4-59, and the VH3 gene family was used at a significantly lower level by these Abs. The V3 Abs preferentially used the JH3 and D2-15 gene segments.
Gorny2009
(antibody sequence)
-
2191: This Ab was shown to equally neutralize SF162 and the SF162 variant with a JR-FL V3 loop, SF162(JR-FL V3). In contrast, a reduction in sensitivity to neutralization was observed in the SF162(JR-FL V1/V2) variant and was somewhat restored in the SF162(JR-FL V1/V2/V3) variant, indicating that the masking of the V1/V2 loop plays a much greater role in restricting neutralization sensitivity than the variations in V3. This Ab was shown to neutralize viruses with V3 sequences from several different subtypes (B, F, A1, C and CRF02_AG) except subtypes H and CRF01_AE. This Ab failed to neutralize SF162(JR-FL V1/V2) with V3 derived from different HIV-1 clades indicating effective V1/V2-mediated masking of several HIV-1 clades. The effect on the neutralization sensitivity of the residue at the crown of the V3 loop (position 18) was shown to be low for this Ab.
Krachmarov2006
(neutralization, variant cross-reactivity, subtype comparisons)
-
2191: This MAb was derived from plasma from a patient with env clade B virus with the GPGR V3 motif. When cross-reactivity was tested, this Ab bound to the V3subtypeB-fusion protein containing GPGR motif but not to V3subtypeA-fusion protein containing GPGQ motif. This Ab was also shown to be able to neutralize both clade B psSF162 (GPGR) and clade C psMW965 (GPGQ) virus and three of subtype B and three non-B primary isolates.
Gorny2006
(neutralization, variant cross-reactivity, binding affinity, subtype comparisons)
-
2191: Full-length gp160 clones were derived from acute and early human HIV-1 infections and used as env-pseudotyped viruses in neutralization assays for their characterization as neutralization reference agents. 3 out of 19 pseudoviruses were sensitive to neutralization by 2191, as was the SF162.LS strain. Two additional pseudoviruses were sensitive at higher Ab concentrations.
Li2005a
(assay or method development, neutralization)
-
2191: This study is about the V2 MAb C108g, that is type-specific and neutralizes BaL and HXB2. JR-FL is a neutralization resistant strain; modification of JRFL at V2 positions 167 and 168 (GK->DE) created a C108g epitope, and C108g could potently neutralize the modified JR-FL. The modification in V2 also increased neutralization sensitivity to V3 MABs 4117c, 2219, 2191, and 447-52D, but only had minor effects on neutralization by CD4BS MAb 5145A, and broadly neutralizing MAbs IgG1b12, 2G12, and 2F5.
Pinter2005
(antibody binding site)
-
2191: V1V2 was determined to be the region that conferred the neutralization phenotype differences between two R5-tropic primary HIV-1 isolates, JRFL and SF162. JRFL is resistant to neutralization by many sera and MAbs, while SF162 is sensitive. All MAbs tested, anti-V3, -V2, -CD4BS, and -CD4i, (except the broadly neutralizing MAbs IgG1b12, 2F5, and 2G12, which neutralized both strains), neutralized the SF162 pseudotype but not JRFL, and chimeras that exchanged the V1V2 loops transferred the neutralization phenotype. 5/6 anti-V3 MAbs, including 2191, had similar binding affinity to soluble SF162 and JR-FL rgp120s, although the V3 loop differs at three positions (HigpgrafyTtgE for JR-FL and TigpgrafyAtgD for SF162).
Pinter2004
(variant cross-reactivity)
-
2191: V3 MAb neutralization is influenced by retaining the epitope, exposure on the intact virion, mobility during CD4-induced conformational change, and affinity. Anti-V3 MAbs selected using V3 peptides neutralize less effectively than V3 MAbs selected using fusion proteins or gp120, suggesting antigenic conformation is important. This MAb was selected using a JR-CSF fusion protein, and could neutralize 8/13 B clade viruses.
Gorny2004
(antibody binding site)
-
2191: This review provides summaries of Abs that bind to HIV-1 Env. There are many V3 MAbs, many neutralize some TCLA strains, and a subset can also neutralize some primary isolates. The set that can cross-neutralize primary isolates (2182, 2191, 2219, 2412, 2442, 2456) bind V3 but are conformationally senstitive, suggesting some structural conservation despite sequence variation. These MAbs have distinct epitopes relative to 447-52D, a MAb directed at the tip of the V3 loop that also can neutralize many primary isolates. Inter-clade cross-neutralization by these anti-V3 MAbs is reduced.
Gorny2003
(variant cross-reactivity, review, subtype comparisons)
-
2191: Conformation-dependent anti-V3 loop Abs may be more cross-reactive, so six new V3 MAbs were generated from cells of asymptomatic HIV-1-infected individuals by selection of heterhybridomas using a V3-fusion protein (V3-fp), the HIV-1 JRCSF V3 loop inserted into a truncated murine leukemia virus gp70 -- the six new MAbs all bind to the tip of the V3 loop and cross-compete with the MAb 447-52D and are conformationally sensitive -- MAbs showed cross-clade binding to native, intact virions of clades A(N=2), B(N=4), and F(N=2), limited binding to C(N=3) and D(N=3), and did not bind to CRF01(subtype E, N=2) -- the strength binding was highly correlated with percent neutralization using the ghost cell or PHA blast assay -- five well-characterized MAbs were used as controls: anti-V3 447-52D (anti-V3 MAb for competition and neutralization studies), 654 (anti-CD4BS used as a conformation-sensitive MAb control), 1331A (anti-C5 used as a linear binding site MAb control), MAb 246 (anti-gp41 MAb that bound to primary isolates of all clades) -- 5/6 MAbs were derived from individuals infected in the US, presumably with clade B, and one, 2182, was derived from an individual who was infected abroad with clade A who is presently living in New York city -- 2412 and 2456 were produced from cells obtained from the same individual, while the other MAbs were each generated from different subjects -- 2191 bound to 10/16 of the diverse isolates, not to any clade D or CRF01.
Gorny2002
(antibody binding site, antibody generation, variant cross-reactivity, subtype comparisons)
References
Showing 13 of
13 references.
Isolation Paper
Gorny2002
Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Sandra Cohen, Victoria R. Polonis, William J. Honnen, Samuel C. Kayman, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. J. Virol., 76(18):9035-9045, Sep 2002. PubMed ID: 12186887.
Show all entries for this paper.
Gorny2003
Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162.
Show all entries for this paper.
Gorny2004
Miroslaw K. Gorny, Kathy Revesz, Constance Williams, Barbara Volsky, Mark K. Louder, Christopher A. Anyangwe, Chavdar Krachmarov, Samuel C. Kayman, Abraham Pinter, Arthur Nadas, Phillipe N. Nyambi, John R. Mascola, and Susan Zolla-Pazner. The V3 Loop is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. J. Virol., 78(5):2394-2404, Mar 2004. PubMed ID: 14963135.
Show all entries for this paper.
Pinter2004
Abraham Pinter, William J. Honnen, Yuxian He, Miroslaw K. Gorny, Susan Zolla-Pazner, and Samuel C. Kayman. The V1/V2 Domain of gp120 Is a Global Regulator of the Sensitivity of Primary Human Immunodeficiency Virus Type 1 Isolates to Neutralization by Antibodies Commonly Induced upon Infection. J. Virol., 78(10):5205-5215, May 2004. PubMed ID: 15113902.
Show all entries for this paper.
Li2005a
Ming Li, Feng Gao, John R. Mascola, Leonidas Stamatatos, Victoria R. Polonis, Marguerite Koutsoukos, Gerald Voss, Paul Goepfert, Peter Gilbert, Kelli M. Greene, Miroslawa Bilska, Denise L Kothe, Jesus F. Salazar-Gonzalez, Xiping Wei, Julie M. Decker, Beatrice H. Hahn, and David C. Montefiori. Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J. Virol., 79(16):10108-10125, Aug 2005. PubMed ID: 16051804.
Show all entries for this paper.
Pinter2005
Abraham Pinter, William J. Honnen, Paul D'Agostino, Miroslaw K. Gorny, Susan Zolla-Pazner, and Samuel C. Kayman. The C108g Epitope in the V2 Domain of gp120 Functions as a Potent Neutralization Target When Introduced into Envelope Proteins Derived from Human Immunodeficiency Virus Type 1 Primary Isolates. J. Virol., 79(11):6909-6917, Jun 2005. PubMed ID: 15890930.
Show all entries for this paper.
Gorny2006
Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Xiao-Hong Wang, Sherri Burda, Tetsuya Kimura, Frank A. J. Konings, Arthur Nádas, Christopher A. Anyangwe, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):6865-6872, Jul 2006. PubMed ID: 16809292.
Show all entries for this paper.
Krachmarov2006
C. P. Krachmarov, W. J. Honnen, S. C. Kayman, M. K. Gorny, S. Zolla-Pazner, and Abraham Pinter. Factors Determining the Breadth and Potency of Neutralization by V3-Specific Human Monoclonal Antibodies Derived from Subjects Infected with Clade A or Clade B Strains of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):7127-7135, Jul 2006. PubMed ID: 16809318.
Show all entries for this paper.
Gorny2009
Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295.
Show all entries for this paper.
Li2009c
Yuxing Li, Krisha Svehla, Mark K. Louder, Diane Wycuff, Sanjay Phogat, Min Tang, Stephen A. Migueles, Xueling Wu, Adhuna Phogat, George M. Shaw, Mark Connors, James Hoxie, John R. Mascola, and Richard Wyatt. Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. J Virol, 83(2):1045-1059, Jan 2009. PubMed ID: 19004942.
Show all entries for this paper.
Hioe2010
Catarina E. Hioe, Terri Wrin, Michael S. Seaman, Xuesong Yu, Blake Wood, Steve Self, Constance Williams, Miroslaw K. Gorny, and Susan Zolla-Pazner. Anti-V3 Monoclonal Antibodies Display Broad Neutralizing Activities against Multiple HIV-1 Subtypes. PLoS One, 5(4):e10254, 2010. PubMed ID: 20421997.
Show all entries for this paper.
Totrov2010
Maxim Totrov, Xunqing Jiang, Xiang-Peng Kong, Sandra Cohen, Chavdar Krachmarov, Aidy Salomon, Constance Williams, Michael S. Seaman, Ruben Abagyan, Timothy Cardozo, Miroslaw K. Gorny, Shixia Wang, Shan Lu, Abraham Pinter, and Susan Zolla-Pazner. Structure-Guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold. Virology, 405(2):513-523, 30 Sep 2010. PubMed ID: 20663531.
Show all entries for this paper.
Haldar2011
Bijayesh Haldar, Sherri Burda, Constance Williams, Leo Heyndrickx, Guido Vanham, Miroslaw K. Gorny, and Phillipe Nyambi. Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies. PLoS One, 6(2):e17253, 2011. PubMed ID: 21383841.
Show all entries for this paper.