Found 1 matching record:
Displaying record number 1090
Download this epitope
record as JSON.
MAb ID |
2456 |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
(gp120 JRCSF) |
Research Contact |
Susan Zolla-Pazner (Zollas01@mcrcr6.med.nyu) (NYU Med. Center) |
Epitope |
|
Subtype |
B |
Ab Type |
gp120 V3 // V3 glycan (V3g) |
Neutralizing |
P |
Species
(Isotype)
|
human(IgG1λ) |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody sequence, assay or method development, binding affinity, mimotopes, neutralization, review, structure, subtype comparisons, vaccine antigen design, variant cross-reactivity |
Notes
Showing 9 of
9 notes.
-
2456: VH5-51 gene segment was used by 18 of 51 (35%) anti-V3 MAbs. This study analyzed the crystal structure of 5 Fabs encoded by VH5-51/VL lambda genes. Each Fab interacted with key residues at the same 7 positions in the crown of the V3 loop, although the amino acids could vary, suggesting that while V3 is variable in sequence and structurally flexible, a common structure is retained across strains. All 18 VH5-51 using MAbs were studied with a constrained peptide mimotope which preserved the 3D of the VH5-51 derived MAbs 2219, 2557, 1006, but did not react with other anti-V3 MAbs that recognize different V3 epitopes. 14/18 (this MAb included) were reactive with the mimotope, compared to only 1/30 non-VH5-51 MAbs.
Gorny2011
(mimotopes, antibody sequence, structure)
-
2456: Two V3-scaffold immunogen constructs were designed and expressed using 3D structures of cholera toxin B (CTB), V3 in the gp120 context, and V3 bound to 447-52D MAb. The construct (V3-CTB) presenting the complete V3 was recognized by 2456 MAb and by the large majority of other MAbs (18/24), indicating correctly folded and exposed MAb epitopes. V3-CTB induced V3-binding Abs and Abs displaying cross-clade neutralizing activity in immunized rabbits. Short V3-CTB construct, presenting a V3 fragment in conformation observed in complex with 447-52D, was not recognized by 2456.
Totrov2010
(vaccine antigen design, binding affinity, structure)
-
2456: Ab specificities of a panel of HIV sera were systematically analyzed by selective adsorption with native gp120 and specific mutant variants. To test sera for presence of V3 neutralizing activity, V3 peptides were used. These peptides inhibited neutralization mediated by 2456. Sera with limited neutralizing activity were mapped to V3. In some of the broadly neutralizing sera, the gp120-directed neutralization was mapped to CD4bs. Some sera were positive for NAbs against coreceptor binding region. A subset of sera also contained NAbs directed against MPER.
Li2009c
(assay or method development)
-
2456: The Ig usage for variable heavy chain of this Ab was as follows: IGHV:5-51*01, IGHD:3-22, D-RF:2, IGHJ:3. There was a preferential usage of the VH5-51 gene segment for V3 Abs. The usage of the VH4 family for the V3 Abs was restricted to only one gene segment, VH4-59, and the VH3 gene family was used at a significantly lower level by these Abs. The V3 Abs preferentially used the JH3 and D2-15 gene segments.
Gorny2009
(antibody sequence)
-
2456: This Ab was shown to neutralize SF162 and the neutralization sensitivity increased in the SF162 variant with a JR-FL V3 loop, SF162(JR-FL V3). In contrast, a great reduction in sensitivity to neutralization was observed in the SF162(JR-FL V1/V2) variant and was somewhat restored in the SF162(JR-FL V1/V2/V3) variant, indicating that the masking of the V1/V2 loop plays a much greater role in restricting neutralization sensitivity than the variations in V3. This Ab was shown to neutralize viruses with V3 sequences from several different subtypes (B, F, A1, H, C, CRF02_AG and CRF01_AE). This Ab failed to neutralize SF162(JR-FL V1/V2) with V3 derived from different HIV-1 clades, indicating effective V1/V2-mediated masking of several HIV-1 clades. The effect on the neutralization sensitivity of the residue at the crown of the V3 loop (position 18) was shown to be low for this Ab.
Krachmarov2006
(neutralization, variant cross-reactivity, subtype comparisons)
-
2456: Full-length gp160 clones were derived from acute and early human HIV-1 infections and used as env-pseudotyped viruses in neutralization assays for their characterization as neutralization reference agents. 2 out of 19 pseudoviruses were sensitive to neutralization by 2456, as was the SF162.LS strain.
Li2005a
(assay or method development, neutralization)
-
2456: V3 MAb neutralization is influenced by retaining the epitope, exposure on the intact virion, mobility during CD4-induced conformational change, and affinity. Anti-V3 MAbs selected using V3 peptides neutralize less effectively than V3 MAbs selected using fusion proteins or gp120, suggesting antigenic conformation is important. This MAb was selected using a JR-CSF fusion protein, and could neutralize 4/12 B clade viruses.
Gorny2004
(antibody binding site)
-
2456: This review provides summaries of Abs that bind to HIV-1 Env. There are many V3 MAbs, many neutralize some TCLA strains, and a subset can also neutralize some primary isolates. The set that can cross-neutralize primary isolates (2182, 2191, 2219, 2412, 2442, 2456) bind V3 but are conformationally senstitive, suggesting some structural conservation despite sequence variation. These MAbs have distinct epitopes relative to 447-52D, a MAb directed at the tip of the V3 loop that also can neutralize many primary isolates. Inter-clade cross-neutralization by these anti-V3 MAbs is reduced.
Gorny2003
(review)
-
2456: Conformation-dependent anti-V3 loop Abs may be more cross-reactive, so six new V3 MAbs were generated from cells of asymptomatic HIV-1-infected individuals by selection of heterhybridomas using a V3-fusion protein (V3-fp), the HIV-1 JRCSF V3 loop inserted into a truncated murine leukemia virus gp70 -- the six new MAbs all bind to the tip of the V3 loop and cross-compete with the MAb 447-52D and are conformationally sensitive -- MAbs showed cross-clade binding to native, intact virions of clades A(N=2), B(N=4), and F(N=2), limited binding to C(N=3) and D(N=3), and did not bind to CRF01(subtype E, N=2) -- the strength binding was highly correlated with percent neutralization using the ghost cell or PHA blast assay -- five well-characterized MAbs were used as controls: anti-V3 447-52D (anti-V3 MAb for competition and neutralization studies), 654 (anti-CD4BS used as a conformation-sensitive MAb control), 1331A (anti-C5 used as a linear binding site MAb control), MAb 246 (anti-gp41 MAb that bound to primary isolates of all clades) -- 5/6 MAbs were derived from individuals infected in the US, presumably with clade B, and one, 2182, was derived from an individual who was infected abroad with clade A who is presently living in New York city -- 2412 and 2456 were produced from cells obtained from the same individual, while the other MAbs were each generated from different subjects -- 2456 bound to 12/16 of the diverse isolates.
Gorny2002
References
Showing 10 of
10 references.
Isolation Paper
Gorny2002
Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Sandra Cohen, Victoria R. Polonis, William J. Honnen, Samuel C. Kayman, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Human Monoclonal Antibodies Specific for Conformation-Sensitive Epitopes of V3 Neutralize Human Immunodeficiency Virus Type 1 Primary Isolates from Various Clades. J. Virol., 76(18):9035-9045, Sep 2002. PubMed ID: 12186887.
Show all entries for this paper.
Gorny2003
Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162.
Show all entries for this paper.
Gorny2004
Miroslaw K. Gorny, Kathy Revesz, Constance Williams, Barbara Volsky, Mark K. Louder, Christopher A. Anyangwe, Chavdar Krachmarov, Samuel C. Kayman, Abraham Pinter, Arthur Nadas, Phillipe N. Nyambi, John R. Mascola, and Susan Zolla-Pazner. The V3 Loop is Accessible on the Surface of Most Human Immunodeficiency Virus Type 1 Primary Isolates and Serves as a Neutralization Epitope. J. Virol., 78(5):2394-2404, Mar 2004. PubMed ID: 14963135.
Show all entries for this paper.
Li2005a
Ming Li, Feng Gao, John R. Mascola, Leonidas Stamatatos, Victoria R. Polonis, Marguerite Koutsoukos, Gerald Voss, Paul Goepfert, Peter Gilbert, Kelli M. Greene, Miroslawa Bilska, Denise L Kothe, Jesus F. Salazar-Gonzalez, Xiping Wei, Julie M. Decker, Beatrice H. Hahn, and David C. Montefiori. Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J. Virol., 79(16):10108-10125, Aug 2005. PubMed ID: 16051804.
Show all entries for this paper.
Gorny2006
Miroslaw K. Gorny, Constance Williams, Barbara Volsky, Kathy Revesz, Xiao-Hong Wang, Sherri Burda, Tetsuya Kimura, Frank A. J. Konings, Arthur Nádas, Christopher A. Anyangwe, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, and Susan Zolla-Pazner. Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):6865-6872, Jul 2006. PubMed ID: 16809292.
Show all entries for this paper.
Krachmarov2006
C. P. Krachmarov, W. J. Honnen, S. C. Kayman, M. K. Gorny, S. Zolla-Pazner, and Abraham Pinter. Factors Determining the Breadth and Potency of Neutralization by V3-Specific Human Monoclonal Antibodies Derived from Subjects Infected with Clade A or Clade B Strains of Human Immunodeficiency Virus Type 1. J. Virol., 80(14):7127-7135, Jul 2006. PubMed ID: 16809318.
Show all entries for this paper.
Gorny2009
Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295.
Show all entries for this paper.
Li2009c
Yuxing Li, Krisha Svehla, Mark K. Louder, Diane Wycuff, Sanjay Phogat, Min Tang, Stephen A. Migueles, Xueling Wu, Adhuna Phogat, George M. Shaw, Mark Connors, James Hoxie, John R. Mascola, and Richard Wyatt. Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. J Virol, 83(2):1045-1059, Jan 2009. PubMed ID: 19004942.
Show all entries for this paper.
Totrov2010
Maxim Totrov, Xunqing Jiang, Xiang-Peng Kong, Sandra Cohen, Chavdar Krachmarov, Aidy Salomon, Constance Williams, Michael S. Seaman, Ruben Abagyan, Timothy Cardozo, Miroslaw K. Gorny, Shixia Wang, Shan Lu, Abraham Pinter, and Susan Zolla-Pazner. Structure-Guided Design and Immunological Characterization of Immunogens Presenting the HIV-1 gp120 V3 Loop on a CTB Scaffold. Virology, 405(2):513-523, 30 Sep 2010. PubMed ID: 20663531.
Show all entries for this paper.
Gorny2011
Miroslaw K. Gorny, Jared Sampson, Huiguang Li, Xunqing Jiang, Maxim Totrov, Xiao-Hong Wang, Constance Williams, Timothy O'Neal, Barbara Volsky, Liuzhe Li, Timothy Cardozo, Phillipe Nyambi, Susan Zolla-Pazner, and Xiang-Peng Kong. Human Anti-V3 HIV-1 Monoclonal Antibodies Encoded by the VH5-51/VL Lambda Genes Define a Conserved Antigenic Structure. PLoS One, 6(12):e27780, 2011. PubMed ID: 22164215.
Show all entries for this paper.