Found 1 matching record:
Displaying record number 1087
Download this epitope
record as JSON.
MAb ID |
23e (2.3E) |
HXB2 Location |
Env |
Env Epitope Map
|
Author Location |
gp120(gp120 IIIB, J62) |
Research Contact |
James Robinson, Tulane University, New Orleans, LA, USA |
Epitope |
|
Subtype |
B |
Ab Type |
gp120 CD4i |
Neutralizing |
L |
Species
(Isotype)
|
human(IgG) |
Patient |
|
Immunogen |
HIV-1 infection |
Keywords |
antibody binding site, antibody generation, antibody sequence, binding affinity, neutralization, review, subtype comparisons, vaccine antigen design |
Notes
Showing 9 of
9 notes.
-
23e: This study uncovered a potentially significant contribution of VH replacement products which are highly enriched in IgH genes for the generation of anti-HIV Abs including anti-gp41, anti-V3 loop, anti-gp120, CD4i and PGT Abs. The VH replacement "footprints" within CD4i Abs preferentially encode negatively charged amino acids within IgH CDR3. The details of 23e VH replacement products in IgH gene and mutations and amino acid sequence analysis are described in Table 1,Table 2 and Fig 3.
Liao2013a
(antibody sequence)
-
23e: gp41 L669S mutant virus was moderately sensitive to neutralization by 23e while the L669 wild type virus was resistant. This indicates that conformational changes in the MPER could alter the exposure of neutralization epitopes in other regions of HIV-1 Env.
Shen2010
(neutralization)
-
2.3E: Broadly neutralizing sera from elite neutralizers exhibited significant sensitivities to mutations I165A, N332A, and N160K. 2.3E neutralization activity was tested for pseudoviruses with the mutations relative to the WT. 2.3E was shown to require I165A for potent neutralizing activity. Pseudoviruses produced in cells treated with kifunensine were found more sensitive to 2.3E neutralization.
Walker2010
(neutralization)
-
23e: The Ig usage for variable heavy chain of this Ab was as follows: IGHV:1-69*06, IGHD:3-3, D-RF:2, IGHJ:6. Non-V3 mAbs preferentially used the VH1-69 gene segment. In contrast to V3 mAbs, these non-V3 mAbs used several VH4 gene segments and the D3-9 gene segment. Similarly to the V3 mAbs, the non-V3 mAbs used the VH3 gene family in a reduced manner. Anti-CD4i mAbs exclusively used the VH1 gene family.
Gorny2009
(antibody sequence)
-
2.3E: Trimeric envelope glycoproteins with a partial deletion of the V2 loop derived from subtype B SF162 and subtype C TV1 were compared. The magnitude of 2.3E binding to subtype C trimer was lower than to subtype B trimer, either in the presence or absence of CD4. However, the fold increase in binding of 2.3E in presence of CD4 was similar for both subtypes, indicating similar structural rearrangements. Subtype C trimer had many biophysical, biochemical, and immunological characteristics similar to subtype B trimer, except for a difference in the three binding sites for CD4, which showed cooperativity of CD4 binding in subtype C but not in subtype B.
Srivastava2008
(binding affinity, subtype comparisons)
-
23e: This review summarizes data on the role of NAb in HIV-1 infection and the mechanisms of Ab protection, data on challenges and strategies to design better immunogens that may induce protective Ab responses, and data on structure and importance of MAb epitopes targeted for immune intervention. The importance of standardized assays and standardized virus panels in neutralization and vaccine studies is also discussed.
Srivastava2005
(antibody binding site, neutralization, vaccine antigen design, review)
-
23e: This review summarizes MAbs directed to HIV-1 Env. There are six CD4 inducible MAbs and Fabs in the database. The MAb forms neutralize TCLA strains only, but the smaller Fabs and scFv fragments can neutralize primary isolates.
Gorny2003
(review)
-
23e: A series of mutational changes were introduced into the YU2 gp120 that favored different conformations -- 375 S/W seems to favor a conformation of gp120 closer to the CD4-bound state, and is readily bound by sCD4 and CD4i MAbs (17b, 48d, 49e, 21c and 23e) but binding of anti-CD4BS MAbs (F105, 15e, IgG1b12, 21h and F91 was markedly reduced -- IgG1b12 failed to neutralize this mutant, while neutralization by 2G12 was enhanced -- 2F5 did not neutralize either WT or mutant, probably due to polymorphism in the YU2 epitope -- another mutant, 423 I/P, disrupted the gp120 bridging sheet, favored a different conformation and did not bind CD4, CCR5, or CD4i antibodies, but did bind to CD4BS MAbs.
Xiang2002
(antibody binding site, vaccine antigen design)
-
23e: Five CD4i MAbs were studied, 17b, 48d and three new MAbs derived by Epstein-Barr virus transformation of PBMC from an HIV+ long term non-progressor -- 23e and 21c were converted to hybridomas to increase Ab production -- all compete with the well-characterized 17b CD4i MAb in an ELISA antigen capture assay -- critical binding residues are mapped and the CD4i MAb epitopes were distinct but share a common element near isoleucine 420, also important for CCR5 binding, and all five can block CCR5 binding to a sCD4-gp120 complex -- the MAb 48d has the epitope most similar to the CCR5 binding site.
Xiang2002b
(antibody binding site, antibody generation)
References
Showing 9 of
9 references.
Isolation Paper
Xiang2002b
Shi-Hua Xiang, Najah Doka, Rabeéea K. Choudhary, Joseph Sodroski, and James E. Robinson. Characterization of CD4-Induced Epitopes on the HIV Type 1 gp120 Envelope Glycoprotein Recognized by Neutralizing Human Monoclonal Antibodies. AIDS Res. Hum. Retroviruses, 18(16):1207-1217, 1 Nov 2002. PubMed ID: 12487827.
Show all entries for this paper.
Gorny2003
Miroslaw K. Gorny and Susan Zolla-Pazner. Human Monoclonal Antibodies that Neutralize HIV-1. In Bette T. M. Korber and et. al., editors, HIV Immunology and HIV/SIV Vaccine Databases 2003. pages 37--51. Los Alamos National Laboratory, Theoretical Biology \& Biophysics, Los Alamos, N.M., 2004. URL: http://www.hiv.lanl.gov/content/immunology/pdf/2003/zolla-pazner_article.pdf. LA-UR 04-8162.
Show all entries for this paper.
Srivastava2005
Indresh K. Srivastava, Jeffrey B. Ulmer, and Susan W. Barnett. Role of Neutralizing Antibodies in Protective Immunity Against HIV. Hum. Vaccin., 1(2):45-60, Mar-Apr 2005. PubMed ID: 17038830.
Show all entries for this paper.
Srivastava2008
Indresh K. Srivastava, Elaine Kan, Yide Sun, Victoria A. Sharma, Jimna Cisto, Brian Burke, Ying Lian, Susan Hilt, Zohar Biron, Karin Hartog, Leonidas Stamatatos, Ruben Diaz-Avalos, R Holland Cheng, Jeffrey B. Ulmer, and Susan W. Barnett. Comparative Evaluation of Trimeric Envelope Glycoproteins Derived from Subtype C and B HIV-1 R5 Isolates. Virology, 372(2):273-290, 15 Mar 2008. PubMed ID: 18061231.
Show all entries for this paper.
Xiang2002
Shi-Hua. Xiang, Peter D. Kwong, Rishi Gupta, Carlo D. Rizzuto, David J. Casper, Richard Wyatt, Liping Wang, Wayne A. Hendrickson, Michael L. Doyle, and Joseph Sodroski. Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. J. Virol., 76(19):9888-9899, Oct 2002. PubMed ID: 12208966.
Show all entries for this paper.
Gorny2009
Miroslaw K. Gorny, Xiao-Hong Wang, Constance Williams, Barbara Volsky, Kathy Revesz, Bradley Witover, Sherri Burda, Mateusz Urbanski, Phillipe Nyambi, Chavdar Krachmarov, Abraham Pinter, Susan Zolla-Pazner, and Arthur Nadas. Preferential Use of the VH5-51 Gene Segment by the Human Immune Response to Code for Antibodies against the V3 Domain of HIV-1. Mol. Immunol., 46(5):917-926, Feb 2009. PubMed ID: 18952295.
Show all entries for this paper.
Shen2010
Xiaoying Shen, S. Moses Dennison, Pinghuang Liu, Feng Gao, Frederick Jaeger, David C. Montefiori, Laurent Verkoczy, Barton F. Haynes, S. Munir Alam, and Georgia D. Tomaras. Prolonged Exposure of the HIV-1 gp41 Membrane Proximal Region with L669S Substitution. Proc. Natl. Acad. Sci. U.S.A., 107(13):5972-5977, 30 Mar 2010. PubMed ID: 20231447.
Show all entries for this paper.
Walker2010
Laura M. Walker, Melissa D. Simek, Frances Priddy, Johannes S. Gach, Denise Wagner, Michael B. Zwick, Sanjay K. Phogat, Pascal Poignard, and Dennis R. Burton. A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals. PLoS Pathog., 6(8), 2010. PubMed ID: 20700449.
Show all entries for this paper.
Liao2013a
Hongyan Liao, Jun-tao Guo, Miles D. Lange, Run Fan, Michael Zemlin, Kaihong Su, Yongjun Guan, and Zhixin Zhang. Contribution of V(H) Replacement Products to the Generation of Anti-HIV Antibodies. Clin. Immunol., 146(1):46-55, Jan 2013. PubMed ID: 23220404.
Show all entries for this paper.