HIV Databases HIV Databases home HIV Databases home
HIV sequence database



The Evolving Field of HIV CTL Epitope Mapping:
New Approaches to the Identification of Novel Epitopes

Christian Brander1 and Philip J. R. Goulder1,2

  1. Partners AIDS Research Center, Massachusetts General Hospital, Boston, USA
  2. John Radcliffe Hospital, Oxford OX3 9DS, U.K.

The past 12 months since the most recent update of the HIV CTL epitope database have brought a large number of new or newly fine mapped HIV protein derived CTL epitopes. In parallel, the important role that CTL play in containing HIV and SIV replication in the infected host has been supported further, especially by viral escape studies in SIV infection. In addition, the dependence of effective CTL activity on HIV specific T-helper responses has become more evident, particularly from data generated by recent treatment interruption studies. Other recent studies have provided further strong evidence that T-helper responses and the magnitude and breadth of CTL responses are tightly linked.

In addition to these studies supporting earlier findings, there have been significantly new directions established in the field of anti-HIV T cell immunity. Once again the value of the SIV animal model has been highlighted in the studies of Allen et al., that identified epitopes within the Tat protein as being a critical part of the apparently crucial acute CTL response Allen00. This work drew attention to the disparity between CTL of different specificities, so that CTL escape was observed in 100 of animals targeting the Mamu-A*01-restricted Tat epitope, but in none of the same animals that also generated strong responses towards the Mamu-A*01-restricted Gag epitope. Like the earlier studies from this group, from other work in the lymphocytic choriomeningitis virus (LCMV) animal model, and consistent with data that have shown associations between particular HLA class I alleles and rapid (for example HLA-B35) or slow progression (for example, HLA-B57 or B27) in HIV infection, these studies underlined that CTL of different specificities are not equal. Moreover, the CTL specificities that may characterize chronic infection may not actually be those that are important in considerations of vaccine development as some recent data suggest that the specificities of CTL responses observed in chronic responses can differ form those in the acute phase of infection. This is for instance the case for the HLA-A*0201-restricted response to the SL9 epitope in p17 Gag. This is the best-studied CTL specificity in HIV infection, is detectable in 75 of adults expressing A*0201 in chronic infection, and yet was not detectable in 11 A*0201-positive adults studied during acute infection (most prior to seroconversion) Goulder01b.

The focus of HIV CTL studies has therefore increasingly turned to characterizing the timing and specificities of the acute CTL response, since this is very likely to significantly contribute to the initial reduction in viremia and in determining the eventual steady-state set-point during chronic infection. This increased appreciation of the importance of the acute CTL response has brought the realization that the CTL response must be more comprehensively screened, and restricting the analyses to the well-studied proteins of Gag, Nef, RT and Env may not be adequate. Novel technologies such as intracellular cytokine stainings and Elispot assays to detect antigen specific T cells (see below) now make it possible to screen for responses using hundreds of overlapping peptides that span all the HIV proteins. Although this is expensive, this approach may be necessary in order to obtain a comprehensive view of the all-important early CTL response.

New methods for the accurate measurement of CTL responses

Many of the above mentioned exiting new results were obtained by applying new technologies that facilitate the detection of CTL and Th responses Kaul99. Also, these newer approaches have detected immune responses with a higher sensitivity, allowing the complete breadth of CTL responses to be monitored. Elispot assays combined with intracellular staining (ICS) for Interferon (IFN-) allow for the screening of the entire protein sequences of HIV for T cell mediated immune responses and to determine the phenotype of the responding cells. Importantly, this also allows for functional analyses of antigen specific cells, including intracellular perforin and cytokine contents. However, no real alternative to fresh killing (ex-vivo) assays has been developed at this point.

Elispot and ICS have proven useful for epitope fine mapping and definition of HLA restriction without the cumbersome generation of CTL clones and lines. However, analyses using polyclonal PBMC preparation may be inconclusive if different epitopes overlap within the tested peptide and if overlapping epitopes can be presented by different HLA class I molecules. These potential limitations should be kept in mind if epitope fine mapping and HLA restriction analyses are carried out using PBMC preparation. These considerations also affect the criteria we would like to set forward for epitope inclusion in this section of ``optimal epitopes'' within the database, especially with regard to the identification of the restricting HLA class I molecules (see below).

Novel CTL epitopes: Immunodominance and Effectiveness

While the new technologies have greatly increased the speed with which novel epitopes can be defined, from the foregoing discussions it is clearer than before that mere descriptions of new epitopes are only a first step, albeit an important one, in understanding the role of specific CTL responses in control of HIV. Epitope identification has greater value when placed in the context of the individual subjects and of the population being studied. Thus, it is important to know the proportion of HIV-infected individuals expressing the appropriate HLA type who make the CTL response, to know the magnitude of the response in relation to other HIV-specific CTL responses, and to know the timing of the response (acute/chronic), and the viral load of the subject. Determining the effectiveness of individual CTL specificities is not straightforward, but the ability to link a reliably dominant response, generated in acute infection, to long-term control of HIV replication (i.e., low viral load) would be of value in consideration of vaccine design.

Epitope prediction

The ``reverse immunogenetics'' approach to define novel CTL epitopes has been an enormously successful one, rapidly achieving the desired result of the equivalent of finding a needle in a haystack. The elution of peptides from individual class I molecules has generated a huge amount of valuable data regarding the types of peptides that are best-suited for binding to particular class I molecules. Using these peptide-binding motifs to synthesize new peptides that can be tested for binding and for CTL recognition is therefore an attractive method that is continually being refined (SYFPEITHI, Database of MHC ligands and peptide motifs; http://www.uni- tuebingen.de/uni/kxi). Combining the reverse immunogenetics and the comprehensive screening methods may today be the most effective approach to quickly reach the optimal epitopes prediction from a 15mer peptide sequence. Having arrived at this putative optimal peptide, confirmation using 4 additional peptides (with one amino acid added or truncated from each terminus of the predicted optimal peptide) will define the optimal epitope sequence with minimal synthesis of truncated peptides.

New viral targets and epitope clustering

Newly identified epitopes that have been reported since the last update of this database confirm previously observed trends. One trend is that an increasing number of CTL epitopes are being identified in proteins outside the traditionally well studied HIV proteins Gag, RT, Env and Nef. This is greatly due to the use of the above described new methodologies that have allowed more sensitive and comprehensive studies of proteins previously not analyzed, especially Tat, Rev and Vpr. Interestingly, a recent report showed that Tat may be targeted frequently in acute infection and may contribute to the containment of the initial viremia, although early escape form these responses was observed Allen00. Similarly, more CTL responses to Rev have been reported recently and may prove useful with regard to vaccine design. It will be important to investigate whether early expression of these proteins (especially before Nef mediated downregulation of HLA class I may take place) could lead to rapid elimination of infected cells resulting in diminished viral burst size.

Another trend that has been confirmed by newly identified epitopes is the clustering of epitopes in certain regions of the different HIV proteins. Recently published work now shows that such epitope clustering is maintained even in individuals with HLA backgrounds that have not traditionally been well studied Goulder00c. However, one recent study found that the immunodominant HIV Gag response in Caucasians was more often targeting an epitope in Gag p17, whereas in Africans, the immunodominant response mapped more frequently to an epitope in Gag p24 Goulder00c.

The likely basis for these differences is the identity of the HLA class I molecules prevalent in the different populations. In addition, alternative mechanisms such as race-dependent differences in the unfolding of HIV proteins and proteasomal digestion and differences in T cell repertoire and available HLA class I alleles to bind and present the processed epitopes may contribute to the different clustering. Finally, sequence differences between HIV clade B and clade C may be a constraining factor for the presentation of immunogenic peptides. Further characterization of HIV specific CTL responses and the fine mapping of these responses in non-Caucasian individuals and individuals infected with non-clade B virus will be necessary to identify the major factors leading to the observed differences in epitope clustering. Importantly, a better understanding of these factors will also be required for the design of population tailored vaccine.

HLA restriction analyses and HLA-C alleles

In the past, some epitopes have been excluded form the list of ``optimal CTL epitopes'' based on inconclusive data on HLA restriction of these epitopes, often caused by high degrees of linkage disequilibrium between certain alleles and the presence of allele subtypes. Some of these epitopes have been reinstated in this list as more HLA restriction analyses data were provided. Since the problem of inconclusive HLA restriction analyses will persist in the future, especially when investigations move into less well characterized ethnicities where the available data of cross-presentation and existence of sub-alleles is limited, it appears important to perform these analyses carefully and with the best available tools. The use of single HLA class I allele transfected cell lines appears as the gold standard for these analyses, provided the correct allele subtype is used (if subtypes are known at all). We would thus like to encourage investigators that have generated such cell lines or face these kind of problems to share their reagents with other investigators for a faster and more accurate characterization of newly discovered CTL epitopes.

The last year has also confirmed the trend that HLA-C alleles can present a number of HIV derived epitopes. This is especially important as HIV Nef does not appear to downregulate C alleles and responses restricted by HLA C may thus not be subject to this immune modulating effect. However, Nef mediated downregulation of HLA class I does not appear to become effective until relatively late in the viral replication cycle and the numbers of HLA-C alleles on the cell surface is low compared to HLA-A and -B alleles. Therefore, the importance of HLA-C alleles restricted CTL responses in HIV infection remains to be established.

As every year, we would like to express our gratitude to the large number of researchers in the field who continuously contribute to this database. We very much welcome any criticism, comments and additions to this list since we are sure that some epitopes will unintentionally escape our attention, despite close monitoring of the literature. Also, pertinent information, such as resources for single HLA allele expressing cell lines, HLA subtype information and new technologies for CTL epitope mapping could be listed or referenced in this list, providing additional help to problems encountered by investigators. Please write or call us with any comments you may have.

Best defined epitope table

In the table that follows, primary anchors are bold faced, secondary anchors are not. The amino acid position numbers shown are those of the analogous epitope in HXB2R, our standard strain as used in other parts of this database.

Christian Brander
phone: (617) 724-5789
FAX: (617) 726-5411
brander@helix.mgh.harvard.edu
Philip J. R. Goulder
phone: (617) 726-5787 or 01144-1865-221335
FAX: (617) 726-5411
goulder@helix.mgh.harvard.edu
Bruce D. Walker
phone: (617) 724-8332
FAX: (617) 726-4691
bwalker@helix.mgh.harvard.edu
Bette Korber
phone: (505) 665-4453
FAX: (505) 665-3493
btk@t10.lanl.gov

Table 1 Best Defined HIV CTL Epitopes

HLA Protein AA Sequence Reference
A*0201 (A2)    
2   6  C
Falk91,Barouch95
    1 anchor
L      L
 
     
M      V
 
    2 anchor
V   
 
  p17 77--85
SLYNTVATL
Johnson91,Parker92,Parker94
  RT 33--41
ALVEICTEM
Haas98,HaasPerCom99
  RT 179--187
VIYQYMDDL
Harrer96a
  RT 309--317
ILKEPVHGV
Walker89,Tsomides91
  gp160 311--320
RGPGRAFVTI
Alexander-Miller96
  gp160 813--822
SLLNATDIAV
Dupuis95
  Nef 136--145
PLTFGWCYKL
Haas96,MaierAutranPerCom99
  Nef 180--189
VLEWRFDSRL
Haas96,MaierAutranPerCom99
  Vpr 58--66
AIIRILQQL
Altfeld01
A*0202 (A2)    
2      C
Barouch95
     
L      L
 
     
V
 
  p17 77--85
SLYNTVATL
GoulderPerCom00
A*0205 (A2) p17 77--85
SLYNTVATL
GoulderPerCom00
A*0301 (A3)    
2      C
DiBrino93,Rammensee95
     
L      K
 
     
V      Y
 
     
M      F
 
  p17 18--26
KIRLRPGGK
Harrer96b
  p17 20--28
RLRPGGKKK
Goulder97, CulmannPerCom99, LewinsohnRiddellPerCom99, WilkesRuhlPerCom99
  p17 20--29
RLRPGGKKKY
Goulder00b
  RT 33--43
ALVEICTEMEK
Haas98,HaasPerCom99
  RT 93--101
GIPHPAGLK
Altfeld00c
  RT 158--166
AIFQSSMTK
Threlkeld97
  RT 269--277
QIYPGIKVR
Altfeld00c
  VIF 17--26
RIRTWKSLVK
Altfeld00c
  gp160 37--46
TVYYGVPVWK
Johnson94
  gp160 770--780
RLRDLLLIVTR
Takahashi91
  Nef 73--82
QVPLRPMTYK
Koenig90,Culmann91
A*1101 (A11)    
2      C
Zhang93,Rammensee95
     
K
 
     
V      
 
     
I      
 
     
F      
 
     
Y      
 
  p17 84--92
TLYCVHQRI
Harrer98
  p24 217--227
ACQGVGGPGHK
Sipsas97
  RT 158--166
AIFQSSMTK
Johnson94b,Zhang93,Threlkeld97
  RT 341--350
IYQEPFKNLK
CulmannPerCom99
  RT 520--528
QIIEQLIKK
Fukada99
  Integrase 179--188
AVFIHNFKRK
Fukada99
  Nef 73--82
QVPLRPMTYK
BuseynePerCom99
  Nef 75--82
PLRPMTYK
Culmann91
  Nef 84--92
AVDLSHFLK
Culmann91
A*2402 (A24)    
2      C
Maier94
     
Y      I
 
     
L
 
     
F
 
  p17 28--36
KYKLKHIVW
IkedaMoore98, LewinsohnPerCom99
  p24 162--172
RDYVDRFFKTL
Dorrell99, Rowland-JonesPerCom99
  gp160 52--61
LFCASDAKAY
Lieberman92,Shankar96
  gp160 585--593
RYLKDQQLL
Dai92
  Nef 134--141
RYPLTFGW
Goulder97f,IkedaMoore98
A*2501 (A25)        
  p24 13--23
QAISPRTLNAW
KuraneWestPerCom99
  p24 71--80
ETINEEAAEW
Klenerman96,vanBaalen96
A*2601 (A26)    
12   6  C
Dumrese98
     
V      Y
 
     
T      F
 
     
I       
 
     
L       
 
     
F       
 
     
D    I   
 
     
E    L   
 
     
V   
 
  p24 35--43
EVIPMFSAL
Goulder96b
A*2902 (A29)        
  gp160 209--217
SFEPIPIHY
Altfeld00c
A*3002 (A30)    
12        C
Rammensee99
     
Y        Y
 
     
F         
 
     
L         
 
     
V         
 
     
R         
 
  p17 76--86
RSLYNTVATLY
Goulder01a
  RT 173--181
KQNPDIVIY
Goulder01a
  RT 263--271
KLNWASQIY
Goulder01a
  gp160 704--712
IVNRNRQGY
Goulder01a
  gp41 794--802
KYCWNLLQY
Goulder01a
A*3101 (A31)    
2        C
Falk94,Rammensee99
     
R
 
     
L         
 
     
V         
 
     
Y         
 
     
F         
 
  gp160 770--780
RLRDLLLIVTR
Safrit94a,Safrit94b
         
         
A*3201 (A32)        
  RT 392--401
PIQKETWETW
Harrer96b
  gp160 419--427
RIKQIINMW
Harrer96b
A*6802 (A68)        
  Protease 3--11
ITLWQRPLV
Rowland-JonesPerCom99
  Protease 30--38
DTVLEEWNL
Rowland-JonesPerCom99
  gp160 777--785
IVTRIVELL
WilkesPerCom99*
A*7401 (A19)        
  Protease 3--11
ITLWQRPLV
Rowland-JonesPerCom99
B*0702 (B7)    
123     C
Englehard93,Rammensee99
     
P       L
 
     
A R      
 
     
R K      
 
  p24 16--24
SPRTLNAWV
LewinsohnPerCom99
  p24 48--56
TPQDLNTML
Wilson99a, WilkesRuhlGoulderPerCom99, Jin00, Wilson97
  p24 223--231
GPGHKARVL
GoulderPerCom00
  gp160 298--307
RPNNNTRKSI
Safrit94b
  gp160 843--851
IPRRIRQGL
WilkesRuhlPerCom99*
  Nef 68--77
FPVTPQVPLR
Haas96, MaierAutranPerCom99
  Nef 71--79
TPQVPLRPM
GoulderPerCom99*
  Nef 77--85
RPMTYKAAL
Bauer97
  Nef 106--115
RQDILDLWIY
GoulderPerCom00
  Nef 128--137
TPGPGVRYPL
CulmannPenciolelli94, Haas96
B*0801 (B8)    
23 5   C
Hill92b,Sutton93, DiBrino94b
     
K K   L
 
     
R    
 
     
PR      
 
     
L       
 
  p17 24--32
GGKKKYKLK
RowlandJones93a, Goulder97c
  p17 74--82
ELRSLYNTV
Goulder97c
  p24 128--135
EIYKRWII
Sutton93, Goulder97c
  p24 197--205
DCKTILKAL
Sutton93
  RT 18--26
GPKVKQWPL
Walker89, Sutton93
  gp160 2--10
RVKEKYQHL
Sipsas97
  gp160 586--593
YLKDQQLL
Johnson92,Shankar96
  Nef 13--20
WPTVRERM
Goulder97c
  Nef 90--97
FLKEKGGL
CulmannPenciolelli94,Price97
?B*1401 or B*1402 (B14) Rev 67--75
SAEPVPLQL
vanBaalenPerCom00
B*1402 (B14)    
23 5   C
DiBrino94a
     
R  R   L
 
     
K  H    
 
     
L      
 
     
Y      
 
     
F      
 
  p24 166--174
DRFYKTLRA
Harrer96b
  gp160 584--592
ERYLKDQQL
Johnson92
B*1501 (B62)    
2      C
 
     
Q      Y
Barber97
     
L      F
Barber97
     
M       
Barber97
  p24 137--145
GLNKIVRMY
Johnson91,GoulderPerCom99*
  RT 260--271
LVGKLNWASQIY
JohnsonPerCom99
  RT 309--318
ILKEPVHGVY
Johnson91,JohnsonPerCom99
  Nef 117--127
TQGYFPDWQNY
CulmannPerCom99
B*1516 (B63)    
2      9
Barber97,Seeger98
     
T      Y
 
     
S      I
 
     
V
 
     
F
 
  gp160 375--383
SFNCGGEFF
Wilson97,WilsonPerCom99
B*1801 (B18)        
  p24 161--170
FRDYVDRFYK
Ogg98
  Nef 135--143
YPLTFGWCY
Culmann91,CulmannPenciolelli94
B*2703 (B27)        
  p24 131--140
RRWIQLGLQK
Rowland-Jones98, Rowland-JonesPerCom99
B*2705 (B27)    
12       C
Jardetzky91,Rammensee95
     
R       L
 
     
F
 
     
K        K
 
     
R        R
 
     
G        I
 
     
A         
 
  p17 19--27
IRLRPGGKK
McKinney99,LewinsohnPerCom99
  p24 131--140
KRWIILGLNK
Nixon88,Buseyne93,Goulder97b
  gp160 786--795
GRRGWEALKY
Lieberman92,LiebermanPerCom99
  Nef 105--114
RRQDILDLWI
Goulder97
B*3501 (B35)    
2      C
Hill92b,Rammensee99
     
P      Y
 
     
A      F
 
     
V      M
 
     
S      L
 
     
I
 
  p17 36--44
WASRELERF
Goulder97f
  p17 124--132
NSSKVSQNY
RowlandJones95
  p24 122--130
PPIPVGDIY
RowlandJones95
  p24 122--130
NPVPVGNIY
RowlandJones95
  RT 107--115
TVLDVGDAY
Wilson99a,WilkesRuhlPerCom99,
  RT 118--127
VPLDEDFRKY
Sipsas97,Shiga96
  RT 175--183
NPDIVIYQY
Sipsas97,Shiga96
  RT 175--183
HPDIVIYQY
RowlandJones95
  gp160 42--52
VPVWKEATTTL
WilkesRuhlPerCom99*
  gp160 78--86
DPNPQEVVL
Shiga96
  gp160 606--614
TAVPWNASW
Johnson94
  Nef 74--81
VPLRPMTY
Culmann91,CulmannPenciolelli94
B*3701 (B37)    
2      C
Falk93
     
D      F
 
     
E      M
 
     
L
 
     
I
 
B*3701 (B37) Nef 120--128
YFPDWQNYT
Culmann91,CulmannPerCom99
B*3901 (B39)    
2      C
Falk95
     
R      L
 
     
H       
 
B*3901 (B39) p24 61--69
GHQAAMQML
KuraneWestPerCom99
B*4001 (B60)    
2      C
Falk95a
     
E      L
 
  p17 92--101
IEIKDTKEAL
Altfeld00*
  p24 44--52
SEGATPQDL
Altfeld00*
  p2p7p1p6 118--126
KELYPLTSL
YuPerCom01
  RT 202--210
IEELRQHLL
Altfeld00*
  gp160 805--814
QELKNSAVSL
Altfeld00*
  Nef 92--100
KEKGGLEGL
Altfeld00*
B*4201 (B42)        
  p24 48--56
TPQDLNTML
Goulder00c
  RT 271--279
YPGIKVRQL
WilkesRuhlPerCom99*
  Nef 128--137
TPGPGVRYPL
GoulderPerCom99*
B*4402 (B44)    
2        C
Rammensee99
     
E        F
 
     
Y
 
  p24 162--172
RDYVDRFYKTL
Ogg98
  p24 174--184
AEQASQDVKNW
LewinsohnPerCom99*
  gp160 31--40
AENLWVTVYY
Borrow97
B*5101 (B51)        
     
2      C
Falk95
     
A      F
 
     
P      I
 
     
G       
 
  RT 42--50
EKEGKISKI
Haas98,HaasPerCom99
  RT 128--135
TAFTIPSI
Sipsas97
  gp160 416--424
LPCRIKQII
Tomiyama99
  gp160 557--565
RAIEAQQHL
Sipsas97
B*5201 (B52)        
     
2     C
Rammensee99
     
I
 
     
V
 
     
Q      
 
  p24 143--150
RMYSPTSI
WilkesRuhlPerCom99,Wilson97
B*5301 (B53)    
2      C
 
     
P      L
Hill92b
  p24 48--56
TPYDINQML
Gotch93
  p24 176--184
QASQEVKNW
Buseyne96, Buseyne97, BuseynePerCom99
  Tat 2--11
EPVDPRLEPW
Addo00
B*5501 (B55)        
     
2       C
Barber95
     
P        
 
     
A
 
  gp160 42--51
VPVWKEATTT
Shankar96,LiebermanPerCom99
B*5701 (B57)    
12      C
Barber97
     
A      F
 
     
T      W
 
     
S       
 
     
K       Y
 
  p24 15--23
ISPRTLNAW
Johnson91,Goulder96
  p24 30--40
KAFSPEVIPMF
Goulder96
  p24 108--118
TSTLQEQIGWF
Goulder96
  p24 176--184
QASQEVKNW
Goulder96
  RT 244--252
IVLPEKDSW
vanderBurg97,HayPerCom99
  Integrase 173--181
KTAVQMAVF
Goulder96,HayPerCom99
  Rev 14--23
KAVRLIKFLY
AddoPerCom01
  Nef 116--125
HTQGYFPDWQ
Culmann91
  Nef 120--128
YFPDWQNYT
Culmann91
         
         
B*5703 (B57)        
  p24 30--37
KAFSPEVI
Goulder00b
  p24 30--40
KAFSPEVIPMF
Goulder00b
B*5801 (B58)    
12       C
Barber97,Falk95a
     
A       F
 
     
T       W
 
     
S        
 
     
K         
 
     
V         
 
     
I         
 
  p24 108--117
TSTVEEQQIW
Bertoletti98
  p24 108--117
TSTLQEQIGW
Goulder96
  Rev 14--23
KAVRLIKFLY
Addo00
B*8101 (B81)        
  p24 48--56
TPQDLNTML
Goulder00c
C*0102 (Cw1)    
23    C
Barber97
     
A    L
 
     
L     
 
     
P    
 
  p24 36--43
VIPMFSAL
Goulder97f
C*0401 (Cw4)    
2   6  C
Falk94
     
Y      L
 
     
P      F
 
     
F      M
 
     
V   
 
     
I   
 
     
L   
 
  gp160 375--383
SFNCGGEFF
Wilson97,Johnson93
  p24 176--184
QASQEVKNW
Buseyne97,BuseynePerCom99
Cw*0501 (Cw5)        
  Rev 67--75
SAEPVPLQL
Addo00
C*0802 (Cw8)        
  p24 48--56
TPQDLNTML
Goulder00c
  Nef 82--91
KAAVDLSHFL
Nixon99

* indicates personal communications in which truncation/titration data was provided subtype of B57 not determined

Primary anchors are bold faced, secondary anchors are not.

The amino acid position numbers are those of the analogous epitope in HXB2R our standard strain as used in other parts of this database.

REFERENCES

  1. [AddoPerCom01] M. Addo. personal communication. unpublished 2001.
  2. [Addo00] M.M. Addo, M. Altfeld, E.S. Rosenberg, & et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocyte (CTL) derived from HIV infected individuals. Proc.Natl.Acad.Sci. in press 2001.
  3. [Alexander-Miller (1996)] Alexander-Miller96 M. A. Alexander-Miller, K. C. Parker, T. Tsukui, C. D. Pendleton, J. E. Coligan, J. A. Berzofsky. Molecular analysis of presentation by HLA-A2.1 of a promiscuously binding V3 loop peptide from the HIV-1 Envelope protein to human cytotoxic T lymphocytes. Int Immunol 8:641--649, 1996.
  4. [Allen (2000)] Allen00 T. M. Allen, D. H. O'Connor, P. Jing, J. L. Dzuris, B. R. Mothe, T. U. Vogel, E. Dunphy, M. E. Liebl, C. Emerson, N. Wilson, K. J. Kunstman, X. Wang, D. B. Allison, A. L. Hughes, R. C. Desrosiers, J. D. Altman, S. M. Wolinsky, A. Sette, D. I. Watkins. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia [see comments] . Nature 407:386--90, 2000.
  5. [Altfeld (2000)] Altfeld00c M. Altfeld . Personal communication. unpublished 2000.
  6. [Altfeld (2001)] Altfeld01 M. A. Altfeld, B. Livingston, N. Reshamwala, P. T. Nguyen, M. M. Addo, A. Shea, M. Newman, J. Fikes, J. Sidney, P. Wentworth, R. Chesnut, R. L. Eldridge, E. S. Rosenberg, G. K. Robbins, C. Brander, P. E. Sax, S. Boswell, T. Flynn, S. Buchbinder, P. J. Goulder, B. D. Walker, A. Sette, S. A. Kalams. Identification of Novel HLA-A2-Restricted Human Immunodeficiency Virus Type 1-Specific Cytotoxic T-Lymphocyte Epitopes Predicted by the HLA-A2 Supertype Peptide-Binding Motif. J Virol 75:1301--1311, 2001.
  7. [Altfeld (2000)] Altfeld00 M. A. Altfeld, A. Trocha, R. L. Eldridge, E. S. Rosenberg, M. N. Phillips, M. M. Addo, R. P. Sekaly, S. A. Kalams, S. A. Burchett, K. McIntosh, B. D. Walker, P. J. Goulder. Identification of dominant optimal HLA-B60- and HLA-B61-restricted cytotoxic T-lymphocyte (CTL) epitopes: rapid characterization of CTL responses by enzyme-linked immunospot assay. J Virol 74:8541--9, 2000.
  8. [Barber (1997)] Barber97 L. D. Barber, L. Percival, K. L. Arnett, J. E. Gumperz, L. Chen, P. Parham. Polymorphism in the 1 Helix of the HLA-B Heavy Chain Can Have an Overriding Influence on Peptide-Binding Specificity. J Immunol 158:1660--1669, 1997.
  9. [Barber (1995)] Barber95 L. D. Barber, B. Gillece-Castro, L. Percival, X. Li, C. Clayberger, P. Parham. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol 5:179--90, 1995.
  10. [Barouch (1995)] Barouch95 D. Barouch, T. Friede, S. Stevanovic, L. Tussey, K. Smith, S. Rowland-Jones, V. Braud, A. McMichael, H. G. Rammensee. HLA-A2 subtypes are functionally distinct in peptide binding and presentation. J Exp Med 182:1847--56, 1995.
  11. [Bauer (1997)] Bauer97 M. Bauer, M. Lucchiari-Hartz, R. Maier, G. Haas, B. Autran, K. Eichmann, R. Frank, B. Maier, A. Meyerhans. Structural constraints of HIV-1 Nef may curtail escape from HLA-B7-restricted CTL recognition. Immunol Lett 55:119--22, 1997.
  12. [Bertoletti (1998)] Bertoletti98 A. Bertoletti, F. Cham, S. McAdam, T. Rostron, S. Rowland-Jones, S. Sabally, T. Corrah, K. Ariyoshi, H. Whittle. Cytotoxic T cells from human immunodeficiency virus type 2-infected patients frequently cross-react with different human immunodeficiency virus type 1 Clades. J Virol 72:2439--2448, 1998.
  13. [Borrow (1997)] Borrow97 P. Borrow, H. Lewicki, X. Wei, M. S. Horwitz, N. Peffer, H. Meyers, J. A. Nelson, J. E. Gairin, B. H. Hahn, M. B. Oldstone, G. M. Shaw. Anti-viral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3:205--11, 1997.
  14. [Buseyne(1999)] BuseynePerCom99 F. Buseyne. personal communication. unpublished 1999.
  15. [Buseyne (1996)] Buseyne96 F. Buseyne, M. Fevrier, S. Garcia, M. L. Gougeon, Y. Riviere. Dual function of a human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte clone: inhibition of HIV replication by noncytolytic mechanisms and lysis of HIV-infected CD4+ cells. Virology 225:248--53, 1996.
  16. [Buseyne (1993)] Buseyne93 F. Buseyne, M. McChesney, F. Porrot, S. Kovarik, B. Guy, Y. Riviere. Gag-specific cytotoxic T lymphocytes from human immunodeficiency virus type 1 infected individuals: gag epitopes are clustered in three regions of the p24 gag protein. J Virol 67:694--702, 1993.
  17. [Buseyne (1997)] Buseyne97 F. Buseyne, S. Stevanovic, H. Rammensee, Y. Riviere. Characterization of an HIV-1 p24 gag epitope recognized by a CD8+ cytotoxic T-cell clone. Immunol Lett 55(3):145--149, 1997.
  18. [Culmann(1999)] CulmannPerCom99 B. Culmann. personal communication. unpublished 1999.
  19. [Culmann (1991)] Culmann91 B. Culmann, E. Gomard, M.-P. Kieny, B. Guy, F. Dreyfus, A.-D. Saimot, D. Sereni, D. Sicard, J.-P. Levy. Six epitopes with human cytotoxic CD8+ cells in the central region of the HIV-1 Nef protein. J Immunol 146:1560--1565, 1991.
  20. [Culmann-Penciolelli (1994)] CulmannPenciolelli94 B. Culmann-Penciolelli, S. Lamhamedi-Cherradi, I. Couillin, N. Guegan, J. P. Levy, J. G. Guillet, E. Gomard. Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type 1 Nef protein (See comments in J Virol 1995 Jan;69(1):618). J Virol 68:7336--43, 1994.
  21. [Dai (1992)] Dai92 L. C. Dai, K. West, R. Littaua, K. Takahashi, F. A. Ennis. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol 66:3151--3154, 1992.
  22. [DiBrino (1994a)] DiBrino94b M. DiBrino, K. C. Parker, D. H. Margulies, J. Shiloach, R. V. Turner, M. Garfield, W. E. Biddison WE, J. E. Coligan. The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 269, 1994a.
  23. [DiBrino (1994b)] DiBrino94a M. DiBrino, K. C. Parker, J. Shiloach, R. V. Turner, T. Tsuchida, M. Garfield, W. E. Biddison, J. E. Coligan. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 152:620--31, 1994b.
  24. [DiBrino (1993)] DiBrino93 M. DiBrino, K. C. Parker, J. S. et al. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci USA 90:1508--1512, 1993.
  25. [Dorrell (1999)] Dorrell99 L. Dorrell, T. Dong, G. S. Ogg, S. Lister, S. McAdam, T. Rostron, C. Conlon, A. J. McMichael, S. L. Rowland-Jones. Distinct recognition of non-clade B human immunodeficiency virus type 1 epitopes by cytotoxic T lymphocytes generated from donors infected in Africa. J Virol 73:1708--14, 1999.
  26. [Dumrese (1998)] Dumrese98 T. Dumrese, S. Stevanovic, F. H. Seeger, N. Yamada, Y. Ishikawa, K. Tokunaga, M. Takiguchi, H. Rammensee. HLA-A26 subtype A pockets accommodate acidic N-termini of ligands. Immunogenetics 48:350--3, 1998.
  27. [Dupuis (1995)] Dupuis95 M. Dupuis, S. K. Kundu, T. C. Merigan. Characterization of HLA-A*0201-restricted cytotoxic T-cell epitopes in conserved regions of the HIV type 1 gp160 protein. J Immunol 155:2232--2239, 1995.
  28. [Englehard (1993)] Englehard93 V. H. Englehard, E. L. Huczko, W. Bodner et al. Peptides bound to HLA-B7 determined by mass spectrometry. J Cell Biochem Suppl 1993 17C:56, 1993.
  29. [Falk (1995a)] Falk95a K. Falk, O. Rotzschke, M. Takiguchi, V. Gnau, S. Stevanovic, G. Jung, H. Rammensee. Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics 41:162--164, 1995a.
  30. [Falk (1995b)] Falk95b K. Falk, O. Rotzschke, M. Takiguchi, V. Gnau, S. Stevanovic, G. Jung, H. Rammensee. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 41:165--168, 1995b.
  31. [Falk (1994)] Falk94 K. Falk, O. Rotzschke, B. Grahavac. Allele-specific peptide motifs of HLA-C molecules. Proc Natl Acad Sci USA 90:12005--12009, 1994.
  32. [Falk (1993)] Falk93 K. Falk, O. Rotzschke, B. Grahovac, D. Schendel, S. Stevanovic, G. Jung, H. G. Rammensee. Peptide motifs of HLA-B35 and -B37 molecules [published erratum appears in Immunogenetics 1994;39(5):379] . Immunogenetics 38:161--2, 1993.
  33. [Falk (1991)] Falk91 K. Falk, O. Rotzschke, S. Stevanovic, G. Jung, H.-G. Rammensee. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290--296, 1991.
  34. [Fukada (1999)] Fukada99 K. Fukada, Y. Chujoh, H. Tomiyama, K. Miwa, Y. Kaneko, S. Oka, M. Takiguchi. HLA-A*1101-restricted cytotoxic T lymphocyte recognition of HIV-1 Pol protein [letter] . AIDS 13:1413--4, 1999.
  35. [Gotch (1993)] Gotch93 F. Gotch, S. N. McAdam, C. E. Allsopp et al. Cytotoxic T-cells in HIV-2 seropositive Gambians. Identification of a virus specific MHC-restricted peptide epitope. J Immunol 151:3361--3369, 1993.
  36. [Goulder (1996a)] Goulder96b P. Goulder, C. Conlon, K. McIntyre, A. McMichael. Identification of a novel human leukogen antigen A26-restricted epitope in a conserved region of Gag. AIDS 10(12):1441--1443, 1996a.
  37. [Goulder (1997a)] Goulder97 P. Goulder, A. Sewell, D. Lalloo, D. Price, J. Whelan, J. Evans, G. Taylor, G. Luzzi, P. Giangrande, R. Phillips, A. J. McMichael. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J Exp Med 8:1423--33, 1997a.
  38. [Goulder(2000)] GoulderPerCom00 P. J. Goulder. personal communication. unpublished 2000.
  39. [Goulder (2001a)] Goulder01a P. J. Goulder, M. M. Addo, M. A. Altfeld, E. S. Rosenberg, Y. Tang, U. Govender, N. Mngqundaniso, K. Annamalai, T. U. Vogel, M. Hammond, M. Bunce, H. M. Coovadia, B. D. Walker. Rapid Definition of Five Novel HLA-A*3002-Restricted Human Immunodeficiency Virus-Specific Cytotoxic T-Lymphocyte Epitopes by Elispot and Intracellular Cytokine Staining Assays. J Virol 75:1339--1347, 2001a.
  40. [Goulder (2001b)] Goulder01b P. J. Goulder, M. A. Altfeld, E. S. Rosenberg, T. Nguyen, Y. Tang, R. L. Eldridge, M. M. Addo, S. He, J. S. Mukherjee, M. N. Phillips, M. Bunce, S. A. Kalams, R. P. Sekaly, B. D. Walker, C. Brander. Substantial Differences in Specificity of HIV-specific Cytotoxic T Cells in Acute and Chronic HIV Infection. J Exp Med 193:181--194, 2001b.
  41. [Goulder (1997b)] Goulder97f P. J. Goulder, M. Bunce, G. Luzzi, R. E. Phillips, A. J. McMichael. Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses. AIDS 11(15):1884--1886, 1997b.
  42. [Goulder(1999)] GoulderPerCom99 P. J. R. Goulder. personal communication. unpublished 1999.
  43. [Goulder (2000c)] Goulder00c P. J. R. Goulder, C. Brander, K. Annamalai, N. Mngqundaniso, U. Govender, Y. Tang, S. He, K. E. Hartman, C. A. O'Callaghan, G. S. Ogg, M. A. Altfeld, E. S. Rosenberg, H. Cao, S. A. Kalams, M. Hammond, M. Bunce, S. I. Pelton, S. A. Burchett, K. McIntosh, H. M. Coovadia, B. D. Walker. Differential narrow focusing of immunodominant HIV Gag-specific CTL responses in infected African and Caucasoid adults and children. J. Virology 74:5679--90, 2000.
  44. [Goulder (1996b)] Goulder96 P. J. R. Goulder, M. Bunce, P. Krausa, K. McIntyre, S. Crowley, B. Morgan, A. Edwards, P. Giangrande, R. E. Phillips, A. J. McMichael. Novel, cross-restricted, conserved and immunodominant cytotoxic T lymphocyte epitopes in slow HIV Type 1 infection. AIDS Res and Hum Retroviruses 12:1691--1698, 1996b.
  45. [Goulder (1997c)] Goulder97b P. J. R. Goulder, R. E. Phillips, R. A. Colbert, S. McAdam, G. Ogg, M. A. Nowak, P. Giangrande, G. Luzzi, B. Morgan, A. Edwards, A. McMichael, S. Rowland-Jones. Late Escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med 3:212--216, 1997c.
  46. [Goulder (1997d)] Goulder97c P. J. R. Goulder, S. W. Reid, D. A. Price, C. A. O'Callaghan, A. J. McMichael, R. E. Phillips, E. Y. Jones. Combined structural and immunological refinement of HIV-1 HLA-B8 restricted cytotoxic T lymphocyte epitopes. Eur J Immunol 27:1515--1521, 1997d.
  47. [Goulder (2000b)] Goulder00b P. J. R. Goulder, Y. Tang, S. I. Pelton, B. D. Walker. HLA-B57-restricted CTL activity in a single infected subject towards two optimal HIV epitopes, one of which is entirely contained within the other. J Virol 74:5291--9, 2000.
  48. [Haas(1999)] HaasPerCom99 G. Haas. personal communication. unpublished 1999.
  49. [Haas (1996)] Haas96 G. Haas, U. Plikat, P. Debre, M. Lucchiari, C. Katlama, Y. Dudoit, O. Bonduelle, M. Bauer, H. Ihlenfeldt, G. Jung, B. Maier, A. Meyerhans, B. Autran. Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. J Immunol 157:4212--4221, 1996.
  50. [Haas (1998)] Haas98 G. Haas, A. Samri, E. Gomard, A. Hosmalin, J. Duntze, J. M. Bouley, H. G. Ihlenfeldt, C. Katlama, B. Autran. Cytotoxic T-cell responses to HIV-1 reverse transcriptase, integrase and protease. AIDS 12(12):1427--36, 1998.
  51. [Harrer (1996a)] Harrer96a E. Harrer, T. Harrer, P. Barbosa, M. Feinberg, R. P. Johnson, S. Buchbinder, B. D. Walker. Recognition of the highly conserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restricted cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor. J Inf Dis 173:476--479, 1996a.
  52. [Harrer (1998)] Harrer98 T. Harrer, E. Harrer, P. Barbosa, F. Kaufmann, R. Wagner, S. Bruggemann, J. R. Kalden, M. Feinberg, R. P. Johnson, S. Buchbinder, B. D. Walker. Recognition of two overlapping CTL epitopes in HIV-1 p17 by CTL from a long-term nonprogressing HIV-1-infected individual. J Immunol 161:4875--81, 1998.
  53. [Harrer (1996b)] Harrer96b T. Harrer, E. Harrer, S. A. Kalams, P. Barbosa, A. Trocha, R. P. Johnson, T. Elbeik, M. B. Feinberg, S. P. Buchbinder, B. D. Walker. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 156:2616--2623, 1996b.
  54. [Hay(1999)] HayPerCom99 Hay. personal communication. unpublished 1999.
  55. [Hill (1992)] Hill92b A. V. Hill, J. Elvin, A. C. Willis, M. Aidoo, C. E. Allsopp, F. M. Gotch, X. M. Gao, M. Takiguchi, B. M. Greenwood, A. R. Townsend et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria (see comments). Nature 360:434--9, 1992.
  56. [Ikeda-Moore (1998)] IkedaMoore98 Y. Ikeda-Moore, H. Tomiyama, M. Ibe, S. Oka, K. Miwa, Y. Kaneko, M. Takiguchi. Identification of a novel HLA-A24-restricted cytotoxic T-lymphocyte epitope derived from HIV-1 Gag protein. AIDS 12:2073--4, 1998.
  57. [Jin (2000)] Jin00 X. Jin, C. G. Roberts, D. F. Nixon, J. T. Safrit, L. Q. Zhang, Y. X. Huang, N. Bhardwaj, B. Jesdale, A. S. DeGroot, R. A. Koup. Identification of subdominant cytotoxic T lymphocyte epitopes encoded by autologous HIV type 1 sequences, using dendritic cell stimulation and computer-driven algorithm. AIDS Res Hum Retroviruses 16:67--76, 2000.
  58. [Johnson(1999)] JohnsonPerCom99 R. P. Johnson. personal communication. unpublished 1999.
  59. [Johnson (1994)] Johnson94 R. P. Johnson, S. A. Hammond, A. Trocha, R. F. Siliciano, B. D. Walker. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. J Virol 68:3145--3153, 1994.
  60. [Johnson (1992)] Johnson92 R. P. Johnson, A. Trocha, T. M. Buchanan, B. D. Walker. Identification of overlapping HLA class I-restricted cytotoxic T-cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med 175:961--971, 1992.
  61. [Johnson (1993)] Johnson93 R. P. Johnson, A. Trocha, T. M. Buchanan, B. D. Walker. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 67:438--445, 1993.
  62. [Johnson (1991)] Johnson91 R. P. Johnson, A. Trocha, L. Yang, G. P. Mazzara, D. L. Panicali, T. M. Buchanan, B. D. Walker. HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. Fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells. J Immunol 147:1512--1521, 1991.
  63. [Johnson Walker(1994)] Johnson94b R. P. Johnson B. D. Walker. CTL in HIV-1 infection: Responses to structural proteins. Curr Topics Microbiol Immunol 189:35--63, 1994.
  64. [Kaul Rowland-Jones(1999)] Kaul99 R. Kaul S. L. Rowland-Jones. Methods of Detection of HIV-specific CTL and Their Role in Protection Against HIV Infection. In B. Korber and C. Brander and B. Haynes and J. Moore and R. Koup and B. Walker and D. Watkins, editor, HIV Molecular Immunology Database: 1999, chapter IV, pages 35--44. Los Alamos National Laboratory, 1999.
  65. [Klenerman (1996)] Klenerman96 P. Klenerman, G. Luzzi, K. McIntyre, R. Phillips, A. McMichael. Identification of a novel HLA-A25 restricted epitope in a conserved region of p24 gag (positions 71-80). AIDS 10:348--350, 1996.
  66. [Koenig (1990)] Koenig90 S. Koenig, T. R. Fuerst, L. V. Wood, R. M. Woods, J. A. Suzich, G. M. Jones, V. F. de la Cruz, R. T. Davey, S. Venkatesan, B. Moss, W. E. Biddison, A. S. Fauci. Mapping the fine specificity of a cytotoxic T-cell response to HIV-1 Nef protein. J Immunol 145:127--135, 1990.
  67. [Kurane West(1999)] KuraneWestPerCom99 I. Kurane K. West. personal communication. unpublished 1999.
  68. [Lewinsohn (1999)] LewinsohnRiddellPerCom99 Lewinsohn, , S. Riddell. personal communication. unpublished 1999.
  69. [Lewinsohn(1999)] LewinsohnPerCom99 D. Lewinsohn. personal communication. unpublished 1999.
  70. [Lieberman(1999)] LiebermanPerCom99 J. Lieberman. personal communication. unpublished 1999.
  71. [Lieberman (1992)] Lieberman92 J. Lieberman, J. A. Fabry, M.-C. Kuo, P. Earl, B. Moss, P. R. Skolnik. Cytotoxic T lymphocytes from HIV-1 seropositive individuals recognize immunodominant epitopes in gp160 and reverse transcriptase. J Immunol 148:2738--2747, 1992.
  72. [Maier Autran(1999)] MaierAutranPerCom99 B. Maier B. Autran. personal communication. unpublished 1999.
  73. [Maier (1994)] Maier94 R. Maier, K. Falk, O. Rotzschke, B. Maier, V. Gnau, S. Stevanovic, G. Jung, H. G. Rammensee, A. Meyerhans. Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool sequencing. Immunogenetics 40:306--8, 1994.
  74. [McKinney (1999)] McKinney99 D. McKinney, D. Lewinson, S. Riddell, P. Greenberg, D. Mosier. The Antiviral Activity of HIV-Specific CD8+ CTL clones is limited by elimination due to encounter with HIV-infected targets. J. Immuno 163:861--7, 1999.
  75. [Nixon (1988)] Nixon88 D. Nixon, A. Townsend, J. Elvin, C. Rizza, J. Gallway, A. McMichael. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336:484--487, 1988.
  76. [Nixon (1999)] Nixon99 D. F. Nixon, D. Douek, P. J. Kuebler, X. Jin, M. Vesanen, S. Bonhoeffer, Y. Cao, R. A. Koup, D. D. Ho, M. Markowitz. Molecular tracking of an Human Immunodeficiency Virus nef specific cytotoxic T-cell clone shows persistence of clone-specific T-cell receptor DNA but not mRNA following early combination antiretroviral therapy. Immunol Lett 66:219--28, 1999.
  77. [Ogg (1998)] Ogg98 G. S. Ogg, X. Jin, S. Bonhoeffer, P. R. Dunbar, M. A. Nowak, S. Monard, J. P. Segal, Y. Cao, S. L. Rowland-Jones, V. Cerundolo, A. Hurley, M. Markowitz, D. D. Ho, D. F. Nixon, A. J. McMichael. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279:2103--6, 1998.
  78. [Parker (1994)] Parker94 K. C. Parker, M. A. Bednarek, J. E. Coligan. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152, 1994.
  79. [Parker (1992)] Parker92 K. C. Parker, M. A. Bednarek, L. K. Hull, U. Utz, B. C. H. J. Zweerink, W. E. Biddison, J. E. Coligan. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 149, 1992.
  80. [Price (1997)] Price97 D. A. Price, P. J. Goulder, P. Klenerman, A. K. Sewell, P. J. Easterbrook, M. Troop, C. R. Bangham, R. E. Phillips. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 94:1890--5, 1997.
  81. [Rammensee (1999)] Rammensee99 H. Rammensee, J. Bachmann, N. Emmerich, S. Stevanovic. SYFPEITHI: An Internet Database for MHC Ligands and Peptide Motifs 1999.
  82. [Rammensee (1995)] Rammensee95 H.-G. Rammensee, T. Friede, S. Stevanovic. MHC ligands and peptide motifs: first listing. Immunogenetics 41:178--228, 1995.
  83. [Rowland-Jones(1999)] Rowland-JonesPerCom99 S. Rowland-Jones. personal communication. unpublished 1999.
  84. [Rowland-Jones (1998)] Rowland-Jones98 S. L. Rowland-Jones, T. Dong, K. R. Fowke, J. Kimani, P. Krausa, H. Newell, T. Blanchard, K. Ariyoshi, J. Oyugi, E. Ngugi, J. Bwayo, K. S. MacDonald, A. J. McMichael, F. A. Plummer. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV- resistant prostitutes in Nairobi [see comments] . J Clin Invest 102:1758--65, 1998.
  85. [Rowland-Jones (1993)] RowlandJones93a S. L. Rowland-Jones, S. H. Powis, J. Sutton, I. Mockridge, F. M. Gotch, N. Murray, A. B. Hill, W. M. Rosenberg, J. Trowsdale, A. J. McMichael. An antigen processing polymorphism revealed by HLA-B8-restricted cytotoxic T lymphocytes which does not correlate with TAP gene polymorphism. Eur J Immunol 23:1999--2004, 1993.
  86. [Rowland-Jones (1995)] RowlandJones95 S. L. Rowland-Jones, J. Sutton, K. Ariyoshi, T. Dong and , F. Gotch, S. McAdam, D. Whitby, S. Sabally, A. Gallimore, T. Corrah, M. Takiguchi, T. Schultz, A. McMichael, H. Whittle. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Medicine 1:59--64, 1995.
  87. [Safrit (1994a)] Safrit94a J. T. Safrit, C. A. Andrews, T. Zhu, D. D. Ho, R. A. Koup. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med 179:463--472, 1994a.
  88. [Safrit (1994b)] Safrit94b J. T. Safrit, A. Y. Lee, C. A. Andrews, R. A. Koup. A region of the Third Variable Loop of HIV-1 gp120 is recognized by HLA-B7-Restricted CTLs from two acute seroconversion patients. J Immunol 153:3822--3830, 1994b.
  89. [Seeger (1998)] Seeger98 F. H. Seeger, D. Arnold, T. Dumrese, H. de la Salle, D. Fricker, H. Schild, H. G. Rammensee, S. Stevanovic. The HLA-B* 1516 motif demonstrates HLA-B-specific P2 pocket characteristics. Immunogenetics 48:156--60, 1998.
  90. [Shankar (1996)] Shankar96 P. Shankar, J. A. Fabry, D. M. Fong, J. Lieberman. Three regions of HIV-1 gp160 contain clusters of immunodominant CTL epitopes. Immunol Lett 52:23--30, 1996.
  91. [Shiga (1996)] Shiga96 H. Shiga, T. Shioda, H. Tomiyama, Y. Takamiya, S. Oka, S. Kimura, Y. Yamaguchi, T. Gojoubori, H. G. Rammensee, K. Miwa, M. Takiguchi. Identification of multiple HIV-1 cytotoxic T-cell epitopes presented by human leukocyte antigen B35 molecule. AIDS 10:1075--1083, 1996.
  92. [Sipsas (1997)] Sipsas97 N. V. Sipsas, S. A. Kalams, A. Trocha, S. He, W. A. Blattner, B. D. Walker, R. P. Johnson. Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. J Clin Invest 99:752--62, 1997.
  93. [Sutton (1993)] Sutton93 J. Sutton, S. Rowland-Jones, W. Rosenberg, D. Nixon, F. Gotch, X.-M. Gao, N. Murray, A. Spoonas, P. Driscoll, M. Smith, A. Willis, A. McMichael. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides. Eur J Immunol 23:447--453, 1993.
  94. [Takahashi (1991)] Takahashi91 K. Takahashi, L.-C. Dai, T. R. Fuerst, W. E. Biddison, P. L. Earl, B. Moss, F. A. Ennis. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8+ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci USA 88:10277--10281, 1991.
  95. [Threlkeld (1997)] Threlkeld97 S. C. Threlkeld, P. A. Wentworth, S. A. Kalams, B. M. Wilkes, D. J. Ruhl, E. Kepgh, J. Sidney, S. Southwood, B. D. Walker, A. Sette. Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily. J Immunol 159 (4):1648--1657, 1997.
  96. [Tomiyama (1999)] Tomiyama99 H. Tomiyama, T. Sakaguchi, K. Miwa, S. Oka, A. Iwamoto, Y. Kaneko, M. Takiguchi. Identification of multiple HIV-1 CTL epitopes presented by HLA-B*5101 molecules. Hum Immunol 60:177--86, 1999.
  97. [Tsomides (1991)] Tsomides91 T. J. Tsomides, B. D. Walker, H. N. Eisen. An optimal viral peptide recognized by CD8+ T-cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci USA 88:11276--11280, 1991.
  98. [van Baalen Gruters(2000)] vanBaalenPerCom00 C. van Baalen R. Gruters. personal communication. unpublished 2000.
  99. [van Baalen (1996)] vanBaalen96 C. A. van Baalen, M. R. Klein, R. C. Huisman, M. E. Dings, S. R. Kerkhof Garde, A. M. Geretti, R. Gruters, C. A. van Els, F. Miedema, A. D. Osterhaus. Fine-specificity of cytotoxic T lymphocytes which recognize conserved epitopes of the Gag protein of human immunodeficiency virus type 1. J Gen Virol 77:1659--1665, 1996.
  100. [van der Burg (1997)] vanderBurg97 S. H. van der Burg, M. R. Klein, O. Pontesilli, A. M. Holwerda, J. Drijfhout, W. M. Kast, F. Miedema, C. J. M. Melief. HIV-1 reverse transcriptase-specific CTL against conserved epitopes do not protect against progression to AIDS. J Immunol 159:3648--3654, 1997.
  101. [Walker (1989)] Walker89 B. D. Walker, C. Flexner, K. Birch-Limberger, L. Fisher, T. J. Paradis, A. Aldovini, R. Young, B. Moss, R. T. Schooley. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:9514--9518, 1989.
  102. [Wilkes(1999)] WilkesPerCom99 B. Wilkes. personal communication. unpublished 1999.
  103. [Wilkes Ruhl(1999)] WilkesRuhlPerCom99 B. M. Wilkes D. J. Ruhl. personal communication. unpublished 1999.
  104. [Wilkes Ruhl Goulder (1999)] WilkesRuhlGoulderPerCom99 B. M. Wilkes, D. J. Ruhl and, P. Goulder. personal communication. unpublished 1999.
  105. [Wilson(1999b)] WilsonPerCom99 C. Wilson. personal communication. unpublished 1999.
  106. [Wilson (1999a)] Wilson99a C. C. Wilson, R. C. Brown, B. T. Korber, B. M. Wilkes, D. J. Ruhl, D. Sakamoto, K. Kunstman, K. Luzuriaga, I. C. Hanson, S. M. Widmayer, A. Wiznia, S. Clapp, A. J. Ammann, R. A. Koup, S. M. Wolinsky, B. D. Walker. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the ariel project for the prevention of transmission of HIV from mother to infant. J Virol 73:3975--85, 1999.
  107. [Wilson (1997)] Wilson97 C. C. Wilson, S. A. Kalams, B. M. Wilkes, D. J. Ruhl, F. Gao, B. H. Hahn, I. C. Hanson, K. Luzuriaga, S. Wolinsky, R. Koup, S. P. Buchbinder, R. P. Johnson, B. D. Walker. Overlapping epitopes in human immunodeficiency virus type 1 gp120 presented by HLA A, B, and C molecules: effects of viral variation on cytotoxic T-lymphocyte recognition. J Virol 71:1256--64, 1997.
  108. [Yu Altfeld(2001)] YuPerCom01 X. Yu M. Altfeld. personal communication. unpublished 2001.
  109. [Zhang (1993)] Zhang93 Q.-I. Zhang, R. Gavioli, G. Klein, M. G. Masucci. An HLA-All-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci USA 90:2217--2221, 1993.
last modified: Tue Apr 13 12:52 2010


Questions or comments? Contact us at seq-info@lanl.gov.

 
Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy's National Nuclear Security Administration
Copyright © 2005-2012 LANS LLC All rights reserved | Disclaimer/Privacy

Dept of Health & Human Services Los Alamos National Institutes of Health